
SoK: Rowhammer in the Post-TRR Era
Pradyumna Shome

Georgia Institute of Technology
Atlanta, GA, USA

pradyumna.shome@gatech.edu

Abstract—Rowhammer is a reliability and security issue that
has plagued DRAM modules ever since its introduction in 2014.
Close packing of DRAM cells within a rank means that when
rows are repeatedly accessed, cells in neighboring rows encounter
bit flips beyond what error-correcting code (ECC) memory can
recover. Over the past years, many attacks have been proposed
leveraging this as a write primitive that circumvents process
isolation through virtual memory.

As a countermeasure, DDR4 and LPDDR4 chips included
a mechanism known as target row refresh (TRR), which re-
freshes neighboring rows when thresholds are exceeded. However,
starting with the disclosure of TRRESPASS, a fuzzing tool that
produces memory access patterns overcoming TRR, there has
been a deluge of new attacks and countermeasures that have
forced computer architects to rethink their solutions. In this
work, we perform a systematic review of new developments in
the space and discuss the broader implications for hardware
designers.

Index Terms—rowhammer, DRAM, attacks, defenses, hard-
ware security

I. INTRODUCTION

Computer scientists have long acknowledged the reliability
limitations of hardware. Cosmic rays and arbitrary faults
have been known to cause bit flips in DRAM, whose effect
is particularly significant at datacenter scale in the cloud
computing era.

Rowhammer, discovered in 2014 [10], has been one bur-
geoning problem that has garnered much interest in academia
and industry. It is a disturbance effect whereby many accesses
to a row of DRAM deplete the charge of cells in adjacent
rows, thus causing bit flips [10]. For a given row, the likelihood
and number of bit flips is magnified if both adjacent rows are
repeatedly accessed. Follow-up work identified the devastating
security implications, by triggering the effect as a write prim-
itive, bypassing isolation mechanisms such as virtual memory,
and writing to privileged memory. Rowhammer-based attacks
have been used to mount attacks on native systems, mobile
platforms [20], virtual machines, web browsers [5], trusted
execution environments [6], and across the network [14] in
addition to poisoning deep neural networks [23] and stealing
encryption keys from kernel memory [12].

While ECC-RAM can correct a single bit, induced flips
often affect multiple bits in a given word. After a spate
of attacks on a variety of platforms, a slew of detect-and-
refresh based countermeasures were proposed in the computer
architecture literature [15, 13, 19, 9]. Most of these schemes
use counters to track memory accesses to groups of addresses.
When the access count to a given row exceeds a given

threshold, they issue a refresh (activation) on adjacent rows,
which recharges them and prevents them from being flipped.
Eventually, target row refresh (TRR) was commoditized in
DDR4 and LPDDR4 chips, which we discuss in II-B

Unfortunately, this was woefully insufficient and proved to
be easy to exploit. The 2020 release ofTRRESPASS[4] showed
that TRR was not the endgame. It is a software program that
produces memory access patterns that cause bit flips even with
TRR. This marked the beginning of a deluge of more creative
attacks that overcame TRR, what we refer to as the “post-
TRR” era.

In this paper, we elucidate broad themes underlying recent
attacks, and new defenses that break attack requirements from
first principles. Finally, we discuss broader implications of this
DRAM cat-and-mouse game on microarchitects and hardware
vendors.

II. BACKGROUND

A. DRAM Organization

Dynamic Random Access Memory (DRAM) is a memory
technology where a bit of information is stored in a cell that
contains a capacitor and transistor to represent data words. As
can be seen in Figure 1, many cells are organized into a row,
and many rows are associated with a rank. Rows of DRAM
need to be refreshed every 32ms to 64ms to maintain charge,
by performing what is known as an activation.

To access memory, the voltage of a word line in a row
needs to be raised. This change is detected and amplified by
a row buffer, thus activating the row. Based on the commonly
used open row policy, as long as memory is being read from
the same row, the row buffer remains activated, which results
in a row hit. If a word from a different row needs to be
read, the former row needs to be closed and the latter row
be activated, which is slower and referred to as a row conflict.
To reduce the frequency of row conflicts and correspondingly
reduce memory access latency, rows in a rank are also grouped
into banks, with each bank having an associated row buffer.
Therefore, a row buffer is analogous to a cache.

When a processor issues a memory request that misses
in all levels of the cache, the translated physical address is
run through a bit permutation, after which it is passed to
a memory controller for data to be fetched ƒrom DRAM.
Here, consecutive ranges of bits in the permuted address are
used to determine a channel ID, rank ID, bank ID, row ID,
and column ID (to uniquely identify a cell within the row).
Channels allow multiple memory request to be served from

1



Fig. 1. The components in modern DRAM. Image from [16]
.

potentially different locations in DRAM (e.g. different mod-
ules) simultaneously, thus increasing the memory bandwidth.

B. Target Row Refresh

A mitigation deployed on DDR4 and LPDDR4 DRAM,
Target Row Refresh has the memory controller (which services
all requests to DRAM) track victim rows and issue refreshes
when the number of accesses exceeds a threshold (one that is
below the rowhammer threshold RH , which is the number
of activations needed in a time interval to induce a flip).
Pietro Frigo et al., the authors of TRRESPASS [4], reverse
engineered several DIMMs and found that there was not
a standard implementation of the mitigation, implying that
vendors relied at least a bit on security through obscurity.
There are several known versions of TRR in production,
including Intel’s pseudoTRR (whose implementation is not
public, and was reverse engineered in TRRESPASS) and In-
DRAM TRR which embeds tracking in DRAM circuitry.

III. ATTACKS

TRRESPASS [4], HAMMERSCOPE [3], Half Double [11],
and Blacksmith [7] are recent rowhammer attacks that attempt
to circumvent specific assumptions that TRR makes: (1) that
specific patterns of victim and aggressors are needed, (2) that
issuing refreshes to selected victim rows can only reduce
flips, and (3) that only integrity is affected but not confi-
dentiality. In aggregate, these attacks underscore a broader
insight widely known in classical software security: kludges
and point defenses will eventually be overcome by creative
attack techniques. Architects attempting to develop robust
countermeasures need to use a more principled approach that
comprehensively ensure confidentiality, integrity, and avail-
ability.

A. TRRespass

In the software testing community, fuzzing is a popular
approach which runs a program with a large number of
randomly generated inputs to trigger bugs. TRRESPASS is a
fuzzer that produces a pattern of memory accesses that can
cause flips for a given victim row. The big idea explored
in this work is that of many-sided Rowhammer. Since the

Fig. 2. Using the low success probability of rowhammer to correctly guess the
start of the .ktext section (despite the presence of KASLR) in HammerScope
[3].

number of aggressor rows that can be tracked is limited by
the sampler size (in practice, around 4 to 6) and can issue
only a single refresh every interval, many-sided Rowhammer
seeks to overwhelm the tracking mechanism of the mitigation
by spreading out accesses across 20+ aggressor rows with less
than 50,000 activations, such that neighboring aggressor rows
are separated by a victim row. The authors perform a case
study of a DIMM manufactured by one of the three major
DRAM vendors (Micron, SK Hynix, and Samsung) in which
they reverse engineer the TRR implementation, finding that the
mitigation is applied on every refresh command, can sample
multiple victim rows, but can refresh only one.

B. HammerScope

Unlike most Rowhammer-based attacks that target integrity,
HammerScope compromises confidentiality. It is an attack
based on the insight that the number of activations needed to
flip a bit is correlated with the DIMM’s power consumption.
An adversary that attempts to mount a Rowhammer attack on
one core can learn information about the memory activity of
a victim program on another core. The variance in levels of
DRAM activity allows a cross-core adversary to distinguish
between different potential DIV (division) operands, instruc-
tion types, and whether an address is mapped, all within a
victim program.

One attack undermines Kernel Address Space Layout Ran-
domization (KASLR), by using the execution time of prefetch
commands on a large number of addresses to determine the
starting address of the kernel text segment (which stores
kernel instructions), thus enabling code reuse attacks (see
Figure 2. Another attack monitors DRAM memory activity
when accessing elements of a Spectre probe array with each
element (a guess of the secret byte value) flushed from the
cache – the guess is correct if there is much lower DRAM
activity, since the speculative access is served from the cache.
The authors propose several possible explanations for the
reduced efficacy of Rowhammer on high DRAM consumption:
increased DRAM power consumption (1) increases the slew
rate, (2) decreases the voltage of the aggressor word line, and
(3) produces interleavings of Rowhammer access patterns with
non-Rowhammer access patterns that reduce its efficacy.

2



Fig. 3. Visual description of the Half-Double attack [11]. Image from Aqua
[18].

C. Half Double

This attack [11] features many accesses to rows at distance
2 from the victim row (”far aggressors”, followed by a few
accesses to rows at distance 1 (”near-aggressors”). The key
insight is that refreshing a row, be it as a mitigation or
otherwise, is equivalent to to activating it (i.e. writing over
the row with the existing contents).

The large number of accesses to far aggressors causes TRR
and related countermeasures to activate near-aggressors several
times, which are not counted towards the threshold. These
cause the victim row to lose charge. Finally, some more
accesses to near aggressors (but below the threshold) cause
more voltage drain on the victim row, which results in bit
flips. This is combined with a Spectre-attack to speculatively
verify that bits were flipped.

D. Blacksmith

The authors of Blacksmith [7] empirically tested a plethora
of memory access patterns to understand the properties fun-
damental to a successful rowhammer access pattern. This led
them to wonder if a uniform pattern of aggressor hammering
was strictly necessary for bit flips to occur. Exploring the large
search space of non-uniform access patterns made them realize
the three properties essential to an attack: order, regularity,
and intensity, which are correlated in the frequency domain to
phase, frequency, and amplitude, respectively.

They begin by extending TRRESPASS’ multi-sided patterns
by adding random accesses to bypass tracking. To accelerate
the search for vulnerable non-uniform patterns, they devised
the notion of an aggressor tuple consisting of several ag-
gressors. Each aggressor tuple is associated with a frequency
(how often a tuple is accessed within a pattern), phase (the
elapsed time from the start of a pattern before a tuple is
accessed), and amplitude (how long a particular tuple is
hammered consecutively). Varying some of these parameters
while holding others constant allows them to create patterns

Fig. 4. Image describing the Blacksmith’s architecture from [7].

that are challenging to explore manually, which ultimately
allows the tool to trigger bit flips when other known patterns
fail. All 40 of the authors’ pool of DDR4 DIMMs were shown
to be vulnerable.

IV. DEFENSES

Recent defenses have approached the problem from a vari-
ety of perspectives. Researchers have gradually reduced the as-
sumptions they make on specific adversary behaviors, and have
increasingly focused on eliminating one or more conditions
necessary in any successful attack. Randomized Row Swap
(RRS) [17] seeks to isolate victim and aggressor rows spatially,
reducing the impact of successful bit flips. Aqua [18] improves
on this by reducing the number of swaps and creates a jail for
aggressor rows, and using DRAM for tracking (unlike other
mechanisms that use SRAM). BlockHammer [22] throttles
memory accesses to rows that it detects are being activated
often, precluding rows from being hammered fast enough in
the available window. Finally, CSI:Rowhammer [8] eschews
any attack-specific assumptions and uses cryptographic MACs
to ensure integrity of data in DRAM to protect against all kinds
of faults and errors, intentional or otherwise.

A. Randomized Row Swap

Unlike all other defenses that focus on victims, this de-
fense targets adversaries. In this mitigation, aggressor rows
with frequent memory accesses are identified by a modified
implementation of the Misra-Gries frequent value analysis
algorithm. Since there are fewer of them compared to victim
rows, aggressor rows are tracked using a hot row tracker,
leading to a comparatively lower overhead.

Once the access counts of these rows exceed a threshold,
they are swapped with other random rows, breaking the spatial
locality with victim rows. Rowhammer attack patterns can
cause bit-flips in rows that are not adjacent, so, instead of
using activations on specific rows (which require considerable
resources to individually track), this defense foils the attacker’s
attempt to focus bit flips on any given row. This greatly reduces
the time an adversary has to trigger bit flips, protecting against
not only known adversarial memory access patterns, but also
those that are unknown and more complex.

3



Fig. 5. Rows are migrated to the quarantine area in Aqua [18].

B. Aqua

Randomized Row-Swap (RRS) needs to swap an aggressor
row with a random other row when the number of activations
reaches a threshold approximately one-sixth the rowhammer
threshold, which has a considerable performance overhead. By
quarantining aggressor rows in a dedicated row quarantine
area (akin to a jail), Aqua greatly reduces the number of swaps
needed by increasing the threshold at which a swap is needed
in the first place. This design leads to a 10x performance
gain relative to RRS, and utilizes only 1% of DRAM to
store aggressor row table, unlike RRS that needs 2.4MB of
(more expensive) SRAM per rank at the lowest Rowhammer
threshold of 1000 activations.

C. BlockHammer

BlockHammer seeks to provide a rowhammer defense that
(1) scales with the continuously lowering Rowhammer ac-
tivation threshold RH and (2) does not require knowledge
of proprietary knowledge of how vendors implement DRAM
chips. The first component, ROWBLOCKER (see 6 uses Bloom
filters to track the activation rate of rows within a time interval.
As can be seen in 6, a row is flagged if its activation count
exceeds a threshold that is below RH . Future memory accesses
to flagged rows get proactively throttled to a rate below RH

until the end of the time interval, thus preventing flips from
occurring.

Simultaneously, the other componentATTACKTHROTTLER,
allocates a per-thread quota for memory accesses that is
inversely correlated with the number of accesses to blacklisted
rows. As a direct consequence, threads with benign applica-
tions enjoy higher memory bandwidth whereas adversaries are
rate-limited, thus improving overall performance. All of this
is implemented in the memory controller (a component of the
CPU), which means that DRAM-specific information is not
relied upon. By introducing and using a metric known as the
Rowhammer Likelihood Index, the tool can reliably differen-
tiate between Rowhammer attacks and other workloads.

D. CSI:Rowhammer

CSI: Rowhammer is a defense that does not rely on any
specific properties of rowhammer attacks, and applies more

Fig. 6. The RowBlocker mechanism in BlockHammer arbitrating memory
access requests. [22]

broadly to all faults. It uses the QARMA tweakable block
cipher [1] to compute a MAC of each word. When data is
written to a cell, a MAC is calculated for the data word and
stored in an adjacent location. This MAC is re-calculated on
every access and compared (using approximate equality) to the
stored MAC. If there is a difference of a single bit, a correction
attempt is made in hardware. If there are more bits with flips,
an Corrupted Memory exception is thrown which is handled
in the operating system, resulting in the potential termination
of the offending process (likely the rowhammer adversary).

To improve performance, the ISA is extended by instruc-
tions to calculate the MAC, and the software-side features a
parity guided algorithm to efficiently search for the correct
version of data (since MACs can only detect that an error
occurred but not fix them or even identify the bits affected).
The key used for the MAC is regenerated on every boot.
This hardware-software co-design is evaluated on gem5 [2]’s
OutOfOrder core and has an overhead lower than 0.75%. It
can correct 5 bit flips in a 256-bit data word within 300 ms
just using a brute-force search. This is is supplemented by
optimizations, one of which is to reload pages that are backed
by a disk, as opposed to attempting a search.

V. DISCUSSION

The post-TRR era has seen adversaries come up with
increasingly complex memory access patterns to trigger bit
flips. Much work has gone into studying the characteristics
of patterns that are more likely to produce flips, which have
culminated in two fuzzing tools, TRRESPASS and Blacksmith.
Meanwhile, defense researchers have had to return to the
drawing board to glean what conditions are strictly necessary
to pull off a successful attack and stem (as opposed to patch)
issues from the root.

Hardware vendors have been caught relying on the obscurity
of DRAM implementations, a strategy that needs changing.
Just as developers working on proprietary software have
embraced open-source and cryptographers rely on algorithm
competitions, DRAM vendors should work to create publicly
auditable designs which can let them provide concrete security
guarantees. A good start could be to leverage attack tools to
increase confidence in the implementations, akin to automated
testing of software. At the same time, basic research into
the physical causes of DRAM disturbance would also be

4



beneficial. Insights gleaned from such research could enable
designing DRAM that is constructed free from this and other
known issues.

Prior research by Jose Rodrigo Sanchez Vicarte et al. [21]
shows that there are many proposed hardware optimizations
with security implications. If security were treated as a first-
class design constraint just as power efficiency and perfor-
mance, we as a community could break free from the cycle of
feature development followed by security-related cleanup as an
afterthought. As Winston Churchill, former Prime Minister of
the United Kingdom said, “those who don’t learn from history
are doomed to repeat it”. Lessons in life will be repeated until
they are learned.

REFERENCES

[1] Roberto Avanzi. “The QARMA Block Cipher Family.
Almost MDS Matrices Over Rings With Zero Divisors,
Nearly Symmetric Even-Mansour Constructions With
Non-Involutory Central Rounds, and Search Heuristics
for Low-Latency S-Boxes”. In: IACR Transactions on
Symmetric Cryptology 2017.1 (Mar. 2017), pp. 4–44.
DOI: 10.13154/tosc.v2017.i1.4-44. URL: https://tosc.
iacr.org/index.php/ToSC/article/view/583.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, et al.
“The Gem5 Simulator”. In: SIGARCH Comput. Archit.
News 39.2 (Aug. 2011), pp. 1–7. ISSN: 0163-5964. DOI:
10.1145/2024716.2024718. URL: https: / /doi .org/10.
1145/2024716.2024718.

[3] Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel,
Daniel Genkin, Angelos D. Keromytis, Yossi Oren,
et al. “HammerScope: Observing DRAM Power Con-
sumption Using Rowhammer”. In: CCS ’22 (2022).
DOI: 10.1145/3548606.3560688. URL: https://doi.org/
10.1145/3548606.3560688.

[4] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor
Van Der Veen, Onur Mutlu, Cristiano Giuffrida, et al.
“TRRespass: Exploiting the many sides of target row
refresh”. In: 2020 IEEE Symposium on Security and
Privacy (SP). IEEE. 2020, pp. 747–762.

[5] Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. “Rowhammer.js: A remote software-induced fault
attack in javascript”. In: International conference on
detection of intrusions and malware, and vulnerability
assessment. Springer. 2016, pp. 300–321.

[6] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Tae-
soo Kim. “SGX-Bomb: Locking down the processor
via Rowhammer attack”. In: Proceedings of the 2nd
Workshop on System Software for Trusted Execution.
2017, pp. 1–6.

[7] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. “BLACKSMITH: Scalable
Rowhammering in the Frequency Domain”. In: 43rd
IEEE Symposium on Security and Privacy (S&P). 2022.

[8] Jonas Juffinger, Lukas Lamster, Andreas Kogler,
Moritz Lipp, Maria Eichlseder, and Daniel Gruss.
“CSI:Rowhammer - Cryptographic Security and In-
tegrity against Rowhammer”. In: 44th IEEE Symposium
on Security and Privacy (S&P). 2023.

[9] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park,
Wanju Doh, Namhoon Kim, Tae Jun Ham, et al.
“Mithril: Cooperative Row Hammer Protection on
Commodity DRAM Leveraging Managed Refresh”.
In: 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE.
2022, pp. 1156–1169.

[10] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, et al. “Flipping Bits in
Memory without Accessing Them: An Experimental
Study of DRAM Disturbance Errors”. In: Proceed-
ing of the 41st Annual International Symposium on
Computer Architecuture. ISCA ’14. Minneapolis, Min-
nesota, USA: IEEE Press, 2014, pp. 361–372. ISBN:
9781479943944.

[11] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu
Kim, Moritz Lipp, Nicolas Boichat, et al. “Half-
Double: Hammering From the Next Row Over”. In:
31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022,
pp. 3807–3824. ISBN: 978-1-939133-31-1. URL: https:
/ / www . usenix . org / conference / usenixsecurity22 /
presentation/kogler-half-double.

[12] Andrew Kwong, Daniel Genkin, Daniel Gruss, and
Yuval Yarom. “RAMBleed: Reading Bits in Memory
Without Accessing Them”. In: 41st IEEE Symposium
on Security and Privacy (S&P). 2020.

[13] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward
Suh, and Jung Ho Ahn. “TWiCe: Preventing Row-
hammering by Exploiting Time Window Counters”. In:
2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). 2019, pp. 385–396.

[14] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas
Lamster, Misiker Tadesse Aga, Clémentine Maurice,
et al. “Nethammer: Inducing rowhammer faults through
network requests”. In: 2020 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW).
IEEE. 2020, pp. 710–719.

[15] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun
Ham, Jung Ho Ahn, and Jae W. Lee. “Graphene: Strong
yet Lightweight Row Hammer Protection”. In: 2020
53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2020, pp. 1–13. DOI: 10.
1109/MICRO50266.2020.00014.

[16] The Beard Sage. DRAM nomenclature explained. Feb.
2020. URL: http : / / thebeardsage . com / dram -
nomenclature-explained/.

[17] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi,
and Prashant J. Nair. “Randomized Row-Swap: Miti-
gating Row Hammer by Breaking Spatial Correlation
between Aggressor and Victim Rows”. In: Proceedings

5



of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems. ASPLOS ’22. Lausanne, Switzerland:
Association for Computing Machinery, 2022, pp. 1056–
1069. ISBN: 9781450392051. DOI: 10.1145/3503222.
3507716. URL: https : / / doi . org / 10 . 1145 / 3503222 .
3507716.

[18] Anish Saxena, Gururaj Saileshwar, Prashant Nair, and
Moinuddin Qureshi. “AQUA: Scalable Rowhammer
Mitigation by Quarantining Aggressor Rows at Run-
time”. In: 2022 ACM/IEEE 55th Annual International
Symposium on Microarchitecture (MICRO). 2022.

[19] Seyed Mohammad Seyedzadeh, Alex K Jones, and
Rami Melhem. “Counter-based tree structure for row
hammering mitigation in DRAM”. In: IEEE Computer
Architecture Letters 16.1 (2016), pp. 18–21.

[20] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clementine Maurice, Giovanni
Vigna, et al. “Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’16. Vienna, Austria: Association
for Computing Machinery, 2016, pp. 1675–1689. ISBN:
9781450341394. DOI: 10.1145/2976749.2978406. URL:
https://doi.org/10.1145/2976749.2978406.

[21] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nan-
deeka Nayak, Caroline Trippel, Adam Morrison, David
Kohlbrenner, et al. “Opening Pandora’s Box: A System-
atic Study of New Ways Microarchitecture Can Leak
Private Data”. In: 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA).
IEEE. 2021, pp. 347–360.

[22] A. Giray Yağlikçi, Minesh Patel, Jeremie S. Kim, Rokn-
oddin Azizi, Ataberk Olgun, Lois Orosa, et al. “Block-
Hammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows”. In: 2021
IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 2021, pp. 345–358.
DOI: 10.1109/HPCA51647.2021.00037.

[23] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. “Deep-
Hammer: Depleting the Intelligence of Deep Neural
Networks through Targeted Chain of Bit Flips”. In:
29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Aug. 2020, pp. 1463–1480.
ISBN: 978-1-939133-17-5. URL: https : / /www.usenix .
org/conference/usenixsecurity20/presentation/yao.

6


