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Figure 1: We identify five critical usability barriers novice users face when interacting with AI agents to accomplish a task. As

they attempt to delegate their task, they must progressively develop a mental model of the agent’s capabilities, navigate its rigid

collaboration style, decode its overwhelming communication, all while the agent isn’t fully cognizant of its own capabilities,

and presumes it has a user’s complete trust.

Abstract

There is growing imprecision about what “AI agents” are, what
they can do, and how effectively they can be used by their intended
users. We pose two key research questions: (i) How does the tech
industry conceive of and market “AI agents”? (ii) What challenges
do end-users face when attempting to use commercial AI agents
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for their advertised uses? We first performed a systematic review
of marketed use cases for 102 commercial AI agents, finding that
they fall into three umbrella categories: orchestration, creation,
and insight. Next, we conducted a usability assessment where 𝑁 =

31 participants attempted representative tasks for each of these
categories on two popular commercial AI agent tools: Operator and
Manus. We found that users were generally impressed with these
agents but faced several critical usability challenges ranging from
agent capabilities that were misaligned with user mental models to
agents lacking the meta-cognitive abilities necessary for effective
collaboration.
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1 Introduction

Visions of computing systems as intelligent partners for knowledge
work stretch back nearly a century with Vannevar Bush’s 1945
accounting of the “Memex,” a mechanized desk that could augment
human memory and association by linking together trails of knowl-
edge [22]. Two decades later, Licklider’s article on “Man–Machine
Symbiosis” sharpened this vision into a research program for in-
teractive computing, suggesting that computers might soon “for-
mulate hypotheses” and “make decisions” in concert with their
human users [48]. The HCI community has long been animated by
these possibilities: from earlyWizard-of-Oz experiments simulating
what may be possible with intelligent interfaces [34], to Horvitz’s
explorations of agent-mediated “mixed-initiative” interfaces for
scheduling and meeting management [36], to Shneiderman and
Maes’ canonical debate on direct manipulation versus interface
agents [52, 70], to end-user programming systems like if-this-then-
that (IFTTT) that help users configure semi-autonomous software
assistants [75]. Along the way, ill-fated counter examples such as
Microsoft’s Clippy [79] highlighted the risks of overzealous agent
designs that frustrated users by, as Adar might put it, having UIs
that wrote checks the underlying AI couldn’t cash [11].

Today, the dream has resurfaced under the banner of “AI agents.”
In 2025, thousands of start-ups and major technology companies
have advertised agentic products that can orchestrate workflows,
generate creative outputs, and deliver insights on demand. Commer-
cial products such as OpenAI’s ChatGPT Operator and emerging
agent platforms like Manus are marketed to non-technical end-
users as productivity multipliers. These systems also revive older
paradigms “centaur” human–AI teaming [41], in which humans
and agents collaborate by sharing complementary strengths.

But, as with many technologies at the peak of their hype cycle,
what an “AI agent” is, what it can do, and how well it fits into
the messy realities of everyday knowledge work remain under-
specified. Much of the conversation about agent performance — in
benchmarks, demo videos, venture funding pitches, and media hype
— has focused on easy-to-measure ideals. But does an agent scoring
26% versus 24% on “Humanity’s Last Exam” matter to a user when a
user wants help with booking a flight? More broadly, what we lack
is systematic understanding of how the tech industry conceives of
“AI agents” as a category of software, and of how end-users actually
experience them in practice. Prior Human-AI interaction research
cautions that without clear expectations, transparency, and user
control [14, 69], agents risk repeating the mistakes of the past.

Against this backdrop, we ask the following two research ques-
tions:

1.1 Research Questions

RQ1: How does the tech industry conceive of and market “AI
agents”? Industry framings matter because they define the
menu of software choices that most users can access.

RQ2: What challenges do end-users face when attempting to use
commercial AI agents for their advertised uses? Here, we
seek to understand the frictions that emerge when aspira-
tional marketing collides with lived practice.

1.2 Summary of Work

To answer these questions, we first conducted a review of the mar-
keted use cases for AI agents. We started by sourcing advertised
uses for AI agents by exploring aggregator websites for AI Agent
products including the AI Agents Directory and Product Hunt, and
supplemented our corpus with Google searches to increase the
diversity of products. Based on our data set, we analyzed themes
across verbiage relating to agent functionalities to extract abstract
use cases. We distilled a taxonomy of three umbrella categories:
Orchestration, Creation, and Insight. Figure 2 provides an
overview of our research process.

We then ran a think-aloud usability study in which 𝑁 = 31
participants attempted representative tasks in each of the three cat-
egories using two popular commercial agent platforms—Operator
and Manus. We supplemented these think-aloud studies with semi-
structured interviews. Our study revealed several recurring usabil-
ity challenges. Although generally successful at accomplishing the
assigned tasks (which were designed to be simple and doable), par-
ticipants struggled with five critical usability barriers: (i) agent
capabilities are misaligned with user mental models, (ii) agents
presume trust without establishing credibility, (iii) agents fail to
accommodate a diversity of collaboration styles, (iv) agents gen-
erate an overwhelming amount of communication overhead, and
(v) agents lack the meta-cognitive abilities that enable productive
collaboration. Figure 1 symbolically depicts Johnny, our proverbial
end-user, navigating these challenges as they attempt to delegate a
task.

These usability breakdowns echo long-standing critiques of agen-
tic systems in HCI: the dangers of ceding too much initiative, the
costs of opaque automation, and the challenge of aligning agent
actions with human goals.

1.3 Contributions

To summarize, this paper makes three core contributions.

• We reviewed and organized how the tech industry conceives
of and markets AI agents, yielding a taxonomy of three core
agent “abilities”.

• We present an empirical account of five critical usability
barriers end-users face when attempting to use these tools
on a representative set of tasks.

• We distill a set of design recommendations for designing AI
agents that are usable, effective, and collaborative thought
partners.
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Figure 2: Overview of our research process. We conducted a systematic review to build a taxonomy of marketed use cases of AI

agents. Next, we conducted a think-aloud session in which participants completed tasks corresponding to our umbrella use

cases, from which we identified usability barriers. These barriers lead to a set of design implications for next-generation AI

agent design.

2 Related Work

Our work is situated at the intersection of three areas of inquiry
in the HCI and AI literature, spanning work conceptualizing and
realizing end-user interface agents, empirical studies of Human-AI
collaboration, and evaluations of models and agents.

2.1 Interface Agents

Although direct manipulation [68] has been the dominant inter-
action paradigm since the invention of graphical user interfaces
(GUIs), researchers have long envisioned alternatives. Interface
agents, intermediaries between a user and a computing system that
invoke system commands on behalf of the user, are one such alter-
native [52]. Due to the increasing complexity of software, in the
1990s, which had a ripple effect on interface design, HCI researchers
conceptualized what a world with interface agents would look like.
This included a characterization of agent types, behaviors, inter-
actions, and challenges [36, 49, 50, 52, 70]. To explore the broader
design space of intelligent agents, without being bottlenecked by
the capabilities of AI at that time, Maulsby et al. [54] introduced
Wizard of Oz prototyping for intelligent agents in HCI research.

In the 2000s, agent-oriented programming frameworks [71] such
as GOAL [28] and JADE[18] were popularized as a new paradigm
for the design of interface agent software by providing explicit
constructs to internalize beliefs, decisions, capabilities, and obliga-
tions. Such formal software development paradigms enabled the
management of multi-agent systems, powering agents that could

buy and sell products, discover information, and manage email ac-
counts on behalf of end-users. This period also saw the emergence
of virtual assistants such as Microsoft Clippy [79], which attempted
to understand the intent of the user to execute direct manipulation
commands in a rule-based manner — though these virtual assistants
were limited and largely unutilized.

Moving forward, the 2010s represented the era of chatbots and
voice assistants, exemplified by Amazon Alexa [78] and Siri [80].
Around this time, AI technology had advanced to enable speech
recognition and machine translation, allowing agents to predict
needs and initiate interactions. Emerging NLP model capabilities
including intent detection, entity extraction, and slot filling were
used by researchers to explore designs for scheduling agents such
as Calendar.help [26].

Buoyed by strong advances in transformer-based large language
models (LLMs) to generate large amounts of coherent text in re-
sponse to text input [21], the 2020s have witnessed an explosion in
the popularity of GUI agents that use commands generated by LLMs
to complete goal-directed actions in Web browsers. Several groups
of authors have conducted large-scale surveys and enumerations of
end-user GUI agents, including ones by Hu et al. on OS Agents [37],
and Zhang et al. on so-called “LLM-brained GUI agents" [85]. These
surveys examine numerous aspects ranging from the historical
evolution of GUI agents, their capabilities, tools and techniques for
engineering them, benchmarks and evaluation techniques, security
and privacy challenges, and limitations.

Building on this rich tradition of interface agent research, our
work examines industry positioning of contemporary “AI agents”
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and end-user experiences with commercial implementations, mov-
ing beyond technical demonstrations to understand practical us-
ability challenges.

2.2 Human-AI Collaboration

2.2.1 Human Perceptions and Mental Models of AI Teammates. The
literature on human-AI teaming underscores the critical role of
human perceptions and mental models in fostering successful col-
laboration [58, 87]. Kaur et al. propose a method to build shared
mental models [42], while HACO [31] offers a framework of human-
AI teaming concepts, supported by an empirical study of a multi-
agent system that enhances teamwork through agent augmentation.
Notably, researchers have observed that AI teammates are judged
differently than their human counterparts, often receiving more
blame for failures [55]. Furthermore, Khadpe et al. [43] reveal that
the conceptual metaphors used to describe conversational AI agents
significantly influence adoption—paradoxically, emphasizing higher
competence can actually reduce users’ willingness to adopt.

2.2.2 The Influence of Trust and Explanations in AI Communications.
Trust is another critical dimension affecting human-AI collabora-
tion [46]. In an empirical study, researchers discovered that people’s
trust in models is influenced both by their stated and observed ac-
curacy, showcasing how important not only true capabilities are
but also communicated capabilities [83]. In the space of LLMs, an-
other empirical study identified that LLM usage of expressions of
uncertainty did reduce overreliance of AI, cementing how commu-
nication in human-AI teams materially affects outcomes [44].

The growing field of explainable AI (XAI) [29] seeks to scaffold
user trust in model predictions by providing users with rationales
for how a model arrived at a prediction. Recent work on “Human-
Centered” XAI has sought to broaden perspectives on XAI beyond
simple interpretations of model behavior and to consider, instead,
the broader sociotechnical context of who is using that model and
for what purpose [32, 47]. In that vein, Miller provides best practices
on how AI should explain itself to humans, based on 250 articles
from the social science literature, recommending explanations be
contrastive, be carefully selected for contextual relevance amongst
a motley of valid causes, and incorporate human conversational
dynamics. [56].

2.2.3 Factors Influencing Human-AI Team Success. Zhang et al. [86]
find that human-AI teams find the best results when each mem-
ber has complementary expertise, noting that humans can eval-
uate task expertise based on confidence signals embedded in AI
communication. In addition, recent work shows the harms of us-
ing insufficiently complex machine learning models for a given
task [67].

However, updating an AI model to improve performance is not
a panacea. Such updates can affect the mental model of the user,
which can degrade the user’s experience and success [15], corrobo-
rated by user responses during GPT 5’s release [33]. Zamfirescu-
Pereira et al. [84] highlight the challenges of prompt engineering by
non-technical end users, likening it to programming with natural
language specifications. These challenges echo studies of learn-
ing barriers found in end-user programming systems [45]. Finally,

Bansal et al. [16] investigate the communication challenges humans
and AI agents face while collaborating.

Extending the broader literature on human-AI teaming, our work
explores breakdowns novice users face when aiming to use com-
mercially available “AI agents” for tasks they are designed to do —
breakdowns that encompass user mental models, trust, and com-
munication styles.

2.3 Evaluations of LLMs and AI Agents

AI has a long history of benchmarks and datasets for evaluat-
ing models, which have been extended to agent evaluation sys-
tems [24, 40, 64, 82, 88]. Recent work attempts to revisit how we
assess AI agents by incorporating personal user data [23], creating
new frameworks [40], evaluation environments for computer-based
knowledge work [30, 61, 81], agent cards [13, 74], domain-specific
benchmarks [39], and cross-domain cognition assessments [63].
Nevertheless, as Salaudeen et al. [66] observe, many AI evalua-
tions suffer from notable validity gaps. Crucially, regardless of their
strengths and weaknesses, many evaluations narrowly focus on
technical competence and ignore human-centered dimensions such
as usability, interpretability, trust, and user satisfaction. This view
is espoused by Wallach et al. who argue that measurement tasks
in generative AI socio-technical systems lack scientific rigor for
them to be valid and propose a framework rooted in social science
measurement practices [76].

Broaching beyond technical evaluations of AI agent capabili-
ties, we contribute an evaluation of commercial AI agents with
real people, doing tasks representative of how those agents are
marketed.

3 Systematic Review of Marketed Use Cases of

AI Agents

To understand the use cases and aspirational ideals that the tech-
nology industry has envisioned for “AI agents”, we started by tax-
onomizing the litany of products and services being marketed for
immediate or near-term use under the “AI agent” banner. We fo-
cus on industry-marketed products because these offerings more
clearly define the menu of possibilities for broad consumer use
of AI agents — while there is also much academic interest in the
topic, the use-cases explored in academia may be less immediately
relevant for end-consumers.

3.1 Methodology

To construct a taxonomy of use-cases for AI agents, we started by
surveying the landscape of AI Agent product websites and articles
that aggregated AI Agents for distinct business functions (e.g. mar-
keting and customer support) and customer deliverables (e.g. slide
decks, short-form videos, and research). During this process, we
found that most agents were task or domain-specific as opposed to
truly general purpose, so we isolated unique use cases by deliver-
able and the verbs used to explain the internal process the agent
automated. Next, we performed open, inductive coding and extrapo-
lated specific features and interactions into more abstract behaviors.
Throughout the process, we brainstormed umbrella words to cluster
individual use cases, until we settled on three atomic, orthogonal
capability types, of which every agent showcased at least one.
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3.1.1 Search Criteria. To source a broad list of of AI agent products
marketed for immediate or near-term consumer use, we employed
a multi-pronged strategy.

First, we explored several aggregated lists of AI Agent products
such as Google Cloud’s 601 Real-World AI Use Cases [65], the AI
Agent Directory [13], and Product Hunt [35]. Second, we supple-
mented these pre-curated lists with our own Google searches under
the keywords “AI agents” and “LLM agents”. Using this process,
we ended up with a list 𝑁 = 102 AI agent products and services
to taxonomize. Note that our goal was not to find all possible AI
agent products and services — as doing so would be intractable —
but to find a broad set of such agents such that we could create
a taxonomy that captures their general envisioned use cases and
aspirational ideals.

3.1.2 Exclusion Criteria. We excluded academic articles and soft-
ware products intended for users with specialized domain knowl-
edge. For example, our exploratory search of agent products led us
to two popular programming agents: Lovable [8] and Cursor [3],
which are positioned to different customer segments. Lovable tar-
gets non-developers looking for tools in the “no-code/low-code”
paradigm by dedicating most of the visual interface to a preview
of the website they are creating, similar to What You See Is What
You Get (WYSIWYG) [38, 68] end-user visual programming tools
such as Microsoft FrontPage [25]. In contrast, Cursor is built as a
fork of a source code editor, Visual Studio Code, used primarily by
software engineers, and dedicates most of its visual space to the
viewing of source code with a limited visual preview in the AI side-
bar. Since our goal was to identify agents that are targeted towards
non-technical lay-users (i.e., the canonical “Johnny” persona used
in prior work [77, 84]), we excluded Cursor but included Lovable
in our final list.

3.1.3 Limitations. “AI agents” are a rapidly evolving product cate-
gory. New AI agent products are released for public use everyday,
and there is much variance in how AI agents are defined and made
distinct from chatbots, products with LLM functionality built-in,
and virtual assistants. To that end, we make no claim to have re-
viewed all AI agent products and services nor that our list is em-
blematic of all future such products. Instead, we have sourced a
broad and diverse list of products that are advertised under the ban-
ner of “AI agents”. Taxonomizing this list affords us an opportunity
to understand the industry-envisioned use-cases and aspirational
ideals for AI agents in the near-term and, subsequently, evaluate
to what extent real end-users can use these products for those
marketed use-cases.

3.2 Analysis

To taxonomize the list of AI agents we had sourced, two authors
engaged in an open-coding process.

First, following the process used in prior work to categorize use-
cases for “pre-trainedmodels” [62], for each of the AI agent products
in our broader list, we read descriptions of customer journeys to
identify low-level input-output behaviors and deliverables an end-
user could expect. From this analysis, the first author independently
created an initial set of codes that described each AI agent use case.
A second author independently followed the same steps to create

their own codes. Both authors met, discussed conflicts, and agreed
on a final codebook. The second author then went and applied this
final codebook to the full set of AI agents we sourced. Our codebook
is listed in Appendix A.

3.3 Taxonomy of AI Agents

We identified three broad categories of immediate / near-term mar-
keted use-cases for AI agents: Orchestration, Creation, and
Insight.

Orchestration agents “act” on behalf of users to manipulate
other software interfaces. These agents promise to simplify the
procedural and motor tasks required to operate user interfaces. In-
sight agents provide allow people to offload high-level cognitive
skills and aim help users with analysis, synthesis, decision-making,
and recommendations. Creation agents generate structured doc-
uments with well-defined formats: e.g., emails, websites, interactive
applications, and marketing materials. The key difference between
Creation and Insight is that agents focused on creation focus
on formatting and presentation of content, as opposed to gener-
ating and synthesizing technical content on behalf of users. We
note that these categories are not mutually exclusive, and some
AI agents could fall under more than one of these categories. In-
deed, complex knowledge work often requires all three: breaking an
underlying problem into a solution recipe (insight), navigating com-
puting workflows to execute on it (orchestration), and presenting
it in a format tailored to a specific end-user (creation).

3.3.1 Orchestration. Orchestration agents feature GUI automa-
tion to perform direct manipulation actions on the user’s behalf.
They operate in a loop where they read the state of a computer GUI
using vision language models, generate commands with a given
user objective via the underlying large language model (LLM), and
execute them via a controller that simulates human input. This
allows agents to produce actions that interact with real-world state.
End-users can use such agents to reduce manual labor and increase
reliability in such tasks as data entry, meeting note transcription,
and unemployment claim appeals, which can be keyboard / click
intensive and prone to human error. Notable examples include
Agentforce (Salesforce) [10], LiveX AI Agent (LiveX AI) [7], and
Trip Matching AI Agent (Expedia) [4].

3.3.2 Creation. Creation agents focus broadly on helping users
compose structured documents for visual and information commu-
nication. Modern digital knowledge work involves creating docu-
ments with unique structures and formats, often with an emphasis
on visual presentation, including legal briefs, slide decks, and web-
sites. Creation agents use an ensemble of tools, ranging from word
processors, spreadsheets, and data visualization platforms to pro-
duce their deliverables, which provide support for text formatting,
layout management, data representation through tables and charts,
and graphic production and editing. Notable examples include Lov-
able [8], used to create apps and websites without any programming
experience and Gamma [5], used to create slide decks from prompts.

3.3.3 Insight. Agents in this category partner with users to trans-
form unstructured information queries into digestible insights. In-
sight agents perform online Web searches, query web APIs, ac-
cess custom knowledge bases in addition to knowledge encoded
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Category Capability Count Example Agents

Orchestration

Automation 36 Salesforce Agentforce; BotPress
Direct UI / Commands 18 Volkswagen IDA; Copilot

Creation

Writing 25 Ubisoft Ghostwriter
Audio 2 ElevenLabs
Websites & Apps 3 Lovable Website Builder; Den (Workspace)
Presentations 2 Gamma Presentation Builder; Beautiful.AI
Images 2 L’Oréal AI Agent (text-to-image)

Insight

Information Retrieval 98 Perplexity AI; Cohesity Gaia
Recommendations 44 Netflix Recommendation Agent; Spotify AI DJ
Data Analysis 31 Hex (Analytics Agent); ThoughtSpot Spotter
Synthesis 17 Fullstory Behavioral Data Agent
Evaluation 6 Wipro Contract Assistant
Personalization 2 Mercedes-Benz CLA Conversational Agent

Table 1: Taxonomy of AI agents highlighting umbrella use cases, with capabilities and example agents.

in their pre-training data, and combine the result of an indefinite
series of stateful prompt-response loops to respond to a user’s re-
quest for information. These agents simulate unstructured research,
knowledge discovery, and decision-making processes that might
otherwise done manually by an end-user. Notable examples include
Perplexity’s Deep Research [12], Deloitte’s Care Finder Agent [51],
and Spotify’s AI DJ [57].

In terms of example tasks, a recent study of Generative AI Chat-
bot use amongst students [72] found that “Brainstorming ideas”,
“Searching for facts and information”, “Help with coursework”, and
“Learning a new skill” were among the top use cases. A common
thread between all of these tasks is the cognitive thinking required
for humans in these tasks: remembering, understanding, applying,
analyzing, synthesizing, and evaluating [19].

Our complete taxonomy is listed in Table 1.

4 User Study

We next sought to address RQ2: i.e., “What challenges do end-
users face when attempting to use commercial AI agents for their
advertised uses?” To that end, we conducted a study to assess to
what extent end-users would be able to use these agents for those
marketed use-cases in practice.

4.1 Methodology

We conducted a user study with 𝑁 = 31 participants, comprising a
think-aloud usability session of two AI agent tasks, followed by a
semi-structured exit interview. During the study, participants would
attempt to accomplish each task using one of two commercial AI
agents. These tasks were randomly selected from a set of three we
had pre-defined, one for each category of our AI agent taxonomy
(i.e., insight, orchestration, creation). The two commercial AI agents
were Operator 1 and Manus 2.

1https://en.wikipedia.org/wiki/OpenAI_Operator
2https://en.wikipedia.org/wiki/Manus_(AI_agent)

4.2 The Participants

Participants were recruited through social media outreach on X and
LinkedIn, as well as through Prolific 3, a research study participant
recruitment platform. Twenty three participants identified as men
and 8 identified as women. Twenty participants used Generative AI
tools daily or almost daily. Our participants belonged to all of our
age groups (ranging from 18-24 to 65+), with 25-34 being the most
represented group. Twenty five participants had at least a Bachelor’s
degree. Participants worked in diverse fields, with Student being
the most common occupation. Table 2 provides an enumeration of
our participant demographics.

4.3 The Agents

The two agents we chose for the task were Manus [53] and Oper-
ator [60]. Note that Operator is no longer accessible by itself and
has since been integrated into OpenAI’s ChatGPT Agent [59].

We chose these agents because they were, at the time of our
study, accessible to the general public and had primarily text-based
prompt interfaces similar to tools we expected participants to have
some exposure to, such as ChatGPT and Claude. Moreover, they
supported all three use-cases in our taxonomy (including the ability
to directly control user interfaces for orchestration) and they had
state-of-the-art feature sets for AI agents at the time we conducted
the study (e.g., the ability to independently use a computer).

4.3.1 Manus. Manus is a general-purpose AI agent that can per-
form Web searches and control a computer with a visible browser,
terminal, and filesystem. Its interface (see Figure 3) consists of 3
full-height panes. On the left is a list of past task threads that take
up about 20% of the screen width. In the middle, occupying about
40% of the screen width is a chat thread that contains user input and
agent messages. The remaining 40% of the screen width is occupied
by a live preview of the agent’s computer, with a dial below that

3https://prolific.com

https://en.wikipedia.org/wiki/OpenAI_Operator
https://en.wikipedia.org/wiki/Manus_(AI_agent)
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Participant Gender Age Group Generative AI Tool Usage Education

P01 Man 25-34 Daily or almost daily Master’s
P02 Man 18-24 Daily or almost daily Bachelor’s
P03 Man 25-34 Several times a week Bachelor’s
P04 Man 45-54 About once a week Bachelor’s
P05 Man 25-34 Several times a week Bachelor’s
P06 Man 25-34 Several times a week Master’s
P07 Man 45-54 Daily or almost daily Master’s
P08 Man 25-34 Daily or almost daily Bachelor’s
P09 Man 55-64 Several times a week Master’s
P10 Man 18-24 Daily or almost daily Some college
P11 Man 25-34 Daily or almost daily Bachelor’s
P12 Man 25-34 Daily or almost daily Master’s
P13 Woman 25-34 Daily or almost daily Bachelor’s
P14 Woman 25-34 Daily or almost daily High School
P15 Woman 45-54 Several times a week Some college
P16 Woman 35-44 Several times a week Bachelor’s
P17 Man 35-44 Daily or almost daily Bachelor’s
P18 Man 25-34 Daily or almost daily Some college
P19 Woman 45-54 Daily or almost daily Bachelor’s
P20 Man 55-64 Daily or almost daily Bachelor’s
P21 Man 35-44 Daily or almost daily Bachelor’s
P22 Man 65+ Daily or almost daily Some college
P23 Man 45-54 Daily or almost daily Bachelor’s
P24 Woman 18-24 Daily or almost daily Bachelor’s
P25 Man 35-44 Several times a week Master’s
P26 Man 35-44 Daily or almost daily Master’s
P27 Woman 25-34 Several times a week Trade school
P28 Man 35-44 Daily or almost daily Bachelor’s
P29 Woman 55-64 Several times a week Bachelor’s
P30 Man 25-34 Less than once a month Bachelor’s
P31 Man 25-34 Daily or almost daily Bachelor’s

Table 2: Demographic Data of User Study Participants

allows you to see the complete replay of the computer’s actions,
and checklist of task progress.

When a user sends an initial prompt, Manus generally provides
a detailed summary of the steps it plans to take. In addition to
acknowledging user requests, users are shown a detailed log of
every action it performs on its computer along with a text summary.
It features interactive chips which link to individual Web search
results and states of the computer screen (e.g. when it scrolls on
the browser). It always terminates a task with a list of any files it
generated, which are clickable buttons that cause the tab on the
right to show a preview of the corresponding file (replacing the
computer screen preview). The user is always able to send prompts
even if it is working on a previous prompt, and the new instructions

are seamlessly integrated into the plan. One can take control of the
computer to complete actions by clicking the “Take Over" button
on the bottom right.

4.3.2 Operator. Operator has capabilities comparable to those of
Manus, but with a more minimal interface. Its initial screen, as
shown in Figure 4, features task idea cards that help users get
started with known tasks it can perform. After entering the first
prompt, the page transitions to a traditional chat thread view.

After the user provides a prompt, Operator displays a pulsing
circle to denote the processing of the user’s input. Unlike most
Generative AI chatbots and Manus, it does not stream responses
but displays them all at once, even if the response spans multiple
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I will do the following:

1. Research Dubai attractions and scenic places

2. Research travel costs and budget components

3. Organize attractions into logical 3-day schedule

4. Create comprehensive travel document with budget

breakdown

5. Enhance document with images and visual elements

6. Deliver final itinerary and budget to user

You can interrupt me at any time during my work to provide

new information or adjust the plan.

Research travel costs and budget components

Updating todo for budget research phase

Searching for flight costs from Kentucky to Dubai for summer

travel

Searching for Dubai accommodation costs and hotel prices

Searching for Dubai restaurant costs and dining prices

Creating comprehensive budget breakdown for 3 people traveling

from Kentucky to Dubai

Marking budget research phase as complete

Organize attractions into logical 3-day schedule

Creating the organized 3-day adventure itinerary for Dubai

Marking itinerary organization phase as complete

C h i l d i h b d b

Editing file todo.md

Searching Kentucky to Dubai flight cost, Louisv…

Searching Dubai hotel prices summer, Dubai acco…

Searching Dubai restaurant prices, Dubai food c…

Creating file dubai_budget_breakdown.md

Editing file todo.md

Creating file dubai_3day_itinerary.md

Editing file todo.md
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3-Day Dubai Itinerary for … Share
Manus's Computer

Manus is using Search

Searching Dubai restaurant prices, Dubai food cost per meal, Dubai dining budget, …

Search

THE 10 BEST Moderately Priced Restaurants in Dubai - Tripadvisor
1. Brass Monkey - City Walk · (980) · American ; 2. Bebek Restaurant & Lounge · (1,349) · International,
Mediterranean ; 3. La Piscina · (1,880).

Eating in Dubai - What are the prices in restaurants? | Two Continents
In local eateries you can eat for as little as AED 20 (about 5 USD), while in mid-range establishments a meal
costs AED 100-150 (about 27-41 USD), and in ...

Daily Food Cost in Dubai 2025: Updated Prices & Budget Tips
The daily food cost in Dubai is 200-350 AED in street food and fast food, however, if you would like to eat at the
Fine Dining Establishments, ...

Is Dubai Expensive? How Much Everything Costs & Price Examples
At mid-budget restaurants, main dishes for lunch or dinner cost about 15-25 EUR. However, if you opt for a
really good steak or seafood, expect ...

Price of restaurant food in Dubai? - Reddit
Expect to pay roughly AED 50 per person. You can go considerably lower or higher but this would be a decent
average.

Complete Guide on Food Prices in UAE - Dubai - Dxboffplan
Prices typically range from 80 to 160 AED per meal, proving that there are a considerable amount of quality food
to be had at an affordable cost ...

How Much Does Food Cost in Dubai in 2025? - Betterhomes
The cost of food at famous fast food chains like KFC, McDonald's, Wendy's, and Popeyes ranges from AED 35 to
60 for a single meal.

Prices in Dubai (UAE) – 2025: Food, accommodation, tours - TripWis
Price cheat sheet · Shawarma – 10-12 AED · Chicken with rice in a local hole-in-the-wall cafe – 30-35 AED ·
McDonald's combo meal – 30-35 AED · Cappuccino to go ...

Prices for Teabreak, Lunch and Dinner in Dubai
Pricing Sunday - Thursday Session 1 Lunch 1 (2:00 PM - 3:30 PM) AED 699 /- USD 191 /- Session 2 Lunch 2
(3:30 PM - 5:00 PM) AED 699 /- USD

Dubai Restaurants Menu | Menus | Tamoka Dubai & Cana by Tamoka

live
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Figure 3: Manus, one of our AI Agents, working on our Holiday Planning task.

Figure 4: The initial screen on Operator, featuring a text box

to enter prompts, and a grid of examples tasks in various

categories.

screens. If it determines that computer use is appropriate for a task,
it creates a rectangular preview of the computer that is embedded
in the chat thread. This can be expanded to another layout where

it occupies nearly three-quarters of the screen space from the right.
The user can “Take Over” to control the computer, which passes
direct manipulation commands such as keystrokes and mouse clicks
through to Operator’s computer, after which they are requested
to record the changes they made before Operator assumes control
again.

4.4 The Tasks

We defined three tasks for our participants to attempt during the
study — one for each category of our AI agent use-case taxonomy.
Specifying tasks is, of course, a very open-ended activity. To pick
useful tasks for our study, we applied the following criteria:

Familiarity. Tasksmust be generally familiar to a non-specialized
end-user, and ideally ones they have completed in the past without
AI assistance. Not only does this ensure tasks are representative
of tasks users might want to delegate in the wild, it controls for
failure modes unrelated to the use of the AI Agent, the main item
of interest in our study.
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Speed. Tasks must be completed relatively quickly. We opted to
observe participants working on two tasks across two 20-minute
sessions in an hour. This gave users sufficient time to complete each
task and the interviewer the opportunity to ask several open-ended
questions. Two tasks allowed us to observe differences within-
subject when the tasks differed in either the category or the tool
used.

Emotional Stakes. Tasks must have some emotional stakes so
that the user is personally invested in the outcome despite carrying
them out within the context of a research study. Most tasks in the
real-world have subjective user acceptance criteria, and we would
like them to be non-trivial so our results are externally valid. For
example, Creation tasks often incorporate visual design. If the
user is not personally invested in the topic, they could trivially
declare victory, even if did not reflect the care they might place on
deliverables whose quality was personally significant.
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🎉  Your complete Dubai adventure travel guide is ready! I've

created a comprehensive 3-day itinerary with detailed budget

breakdown for 3 people traveling from Kentucky to Dubai.

TOTAL BUDGET: $7,237 for 3 people ($2,412 per person)

Key Highlights:

✈️  Flights: Cincinnati to Dubai - $2,757 (best value option)

🏨  Accommodation: Mid-range hotels - $360 (3 nights)

🍽️  Dining: Mix of local and international cuisine - $550

🪂  Adventure Activities: $2,280 including:

• Skydive Dubai + FREE yacht ride (summer special!)

• World's longest urban zipline

• Desert safari with dune bashing

• Burj Khalifa observation deck

• Water sports and scenic viewpoints

Summer Advantages:

• 57% cheaper hotel rates

• Special skydiving offer includes FREE yacht cruise

• Fewer crowds at attractions

• Better flight availability

The attached documents include:

📋  Complete travel guide with day-by-day itinerary

💰  Detailed budget breakdown spreadsheet

📊  Research findings and practical tips

🖼️  Images of key attractions

Everything is organized to maximize your adventure while

being mindful of summer weather and budget considerations!

View all files in this task

Searching images Dubai skyline Burj Khalifa, Sk…

complete_dubai_travel_guide
Markdown · 22.38 KB

dubai_budget_breakdown.xlsx
Spreadsheet · 6.20 KB

dubai_3day_itinerary
Markdown · 6.96 KB

dubai_budget_breakdown
Markdown · 5.28 KB
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3-Day Dubai Itinerary for … Share
Manus's Computer
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Image search

Britannica

Burj Khalifa | Height, Architect,
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Visit Dubai

Rediscover Dubai: Burj Khalifa |
Visit Dubai

Shutterstock

28+ Thousand Burj Khalifa
Buildings Dubai Royalty-Free ...

Windowo

Burj Khalifa: its height the
skyscraper of Dubai

Dubai

Mind-Blowing Facts about the
Burj Khalifa - Dubai Blog

Wikipedia, the free encyclopedia

Burj Khalifa - Wikipedia
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Figure 5: Manus, one of our AI Agents, operating a computer.

4.4.1 Orchestration Task: Holiday Planning. In this task, par-
ticipants needed to use an AI Agent to produce an itinerary of a
3-day holiday to a location of their choice, including flight tickets,
housing arrangements, sightseeing, and other activities of interest.
This task involved orchestration (Section 3.3.1) in that it requires
the agent to complete individual steps by navigating real UIs on an
active computer, as can be seen in Figure 5.

First, the user needed to identify the ideal destination for the
trip, with or without the help of the AI agent. Second, they needed
to choose flights to and from this location, from a list of options
that the AI agent found by entering their preferences into and
browsing the websites of airlines and flight aggregators. Third, the
agent needed to elicit the user’s preferences for the trip’s activities
such as sightseeing and dining, perform a number of searches to
retrieve them, and present a personalized list in real time. Finally,
the agent needed to combine all of these into a coherent schedule
that was suitable for an end-user. The task required planning to
consider a number of complex constraints: e.g., seasonal variation
in sightseeing attractions, budget constraints, personal preferences
for flights, activities, and hotels.

Alignment with Task Criteria. Traveling on holiday is a common
activity for people in the United States, where all participants were
located during our study. Generally, people project their interests
and personal preferences in the locations they choose to travel to
and the activities they engage in, which combined with the non-
trivial costs of a holiday, raise the emotional stakes of the task. All
participants in the pilot study were able to complete this task in 20
minutes.

Agents that claim to perform this type of task must support
Web search, Computer Use, or the Model Context Protocol (MCP).
This is needed to navigate the appropriate websites and provide
the user’s travel information to surface relevant flights, housing
accommodations, and activity recommendations. Users typically
want economical options, which means browsing many websites.
Given the number of input data points involved, users are typically
unable to provide all the relevant details. The agent must be willing
to proactively confirm details or prompt the user if they will affect
the itinerary, which requires some memory and autonomy.
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1. Research motivation theories and workplace applications
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4. Build presentation slides

5. Deliver final presentation to user
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Research motivation theories and workplace applications

Creating todo file to track presentation development progress

Searching for current motivation theories and frameworks

Accessing comprehensive motivation theories resource

Scrolling to see more motivation theories content

I am required to give a ten minute talk about motivation at my

work place, help me come up with a presentation.

Creating file todo.md
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- [x] Build content slides with 
research findings
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## Phase 5: Deliver final presentation 
to user
- [x] Present final slides to user
- [x] Provide presentation files
- [x] Include speaker notes and tips
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Preview Code

Why Motivation Matters: The Numbers Don't Lie
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Figure 6: Manus working on the Creation task, Slide Making.

4.4.2 Creation Task: Slide Making. In this task, portrayed in Fig-
ure 6, participants had to prepare a slide deck for a 10-minute
presentation on a topic of their choice. It could involve visual de-
sign, computer use, or programming, depending on the mechanism
used to produce slides.

Alignment with Task Criteria. We selected this task because it
had reasonably high stakes — we instructed users that the slides
produced should be something they would be willing to present
themselves, requiring them to think critically about the outputs
and if they would be comfortable presenting them. Moreover, the
task was collaborative in that we expected users to express both
stylistic and content preferences, since people can have a strong
variation in presentation style. Moreover, preparing and delivering
presentations is common in modern digital knowledge work.

Agents that do this task must first be able to research information
about the topic of the user’s talk to source a suitable quantity of
information, and barring that ask the user to provide source content.
They must be able to formulate a slide outline that divides the
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information being presented into approximately equal chunks that
fill the duration of the talk. They must either be able to write code
in a visual presentation language such as HTML, Markdown, or
ReStructured Text that can be converted to a slide deck, or be able
to operate a computer to interact with third-party design software
on behalf of the user. Frequently, they must be able to fetch graphics
and media. Finally, they must incorporate design principles to lay
out the content on each slide while maintaining a consistent theme
throughout the presentation. Notable examples of creation-focused
agents include Gamma [5], Beautiful AI [1], and Genspark [6].

Figure 7: OpenAI Operator, sharing a sample budget with a

participant. Participants appreciated its succinct tables.

4.4.3 Insight Task: Professional / Personal Growth Stipend Bud-
geting. In this task, the participants used a research assistant agent
that would help them make the best use of USD 2,000 to advance
their personal or professional development. This task was represen-
tative of Insight (Section 3.3.3) tasks in that it required the agent
to understand the user’s goals and preferences, apply them in per-
forming relevant web searches, analyze each product or activity to
see if they were a match and fit the user’s budget, and synthesize
many instances across numerous websites. Figure 7 illustrates this
on Operator.

Alignment with Task Criteria. Although everyone spends money
differently, budgeting (and accounting, its institutional analogue)
is a task common to people from all walks of life. This task has
emotional stakes because it is deeply personal: what each person
considers a good use of disposable money is highly dependent
on their values, interests, and goals, making a generic budget or
lackluster attempt unlikely.

This task requires an AI agent be able to perform research to
retrieve products, services, and experiences that would benefit the
user’s personal and professional goals. It must be able to synthesize
information from various websites or their internal memory. Finally,
it must be able to determine which combinations of items fall under
the user’s budget, by incorporating the cost of each item. Since
AI Agents only simulate the experience of performing arithmetic
calculations, hallucinations can lead to arithmetic errors that can
affect the user’s trust and reliability. Examples of insight agents
are Perplexity [9], a research-focused AI agent that synthesizes
information across many Web searches; Cleo [2], which answers
financial questions based on spending data; and BeamAI [17], which
creates budgets for businesses by consolidating financial data.

4.5 Procedure

The first author conducted all of the interviews, which were 60-
minute-long Zoom sessions that were both screen and audio recorded.

For studies conducted on participants who signed up via social
media outreach, selected participants received a link to sign up
for an appointment slot through online scheduling software and
a link to a consent form to be formally entered into the study.
Before each interview, the first author randomly chose two tasks,
agent tools, and their order for the user, attempting to ensure that
all tasks and agent pairs were approximately equally distributed
and to eliminate order effects. Table 3 describes the statistics of
task-agent combinations across all the interviews.

First, participants were introduced to the study and asked to
open a link to the online survey. Before each task, a password
manager was used to send temporary links to access each agent.
They were read the task description and were given 20 minutes to
work on each task. The interviewer clarified task-related questions
and communicated intermittently while the participant worked
on a task to capture live reactions to events and updates from the
agent. In general, the interviewer did not answer questions about
the user interface, except for limited circumstances where the tool
appeared to be broken, the participant attempted to solve the task
outside of the agent, or attempted to perform tasks over and above
the task description. This was done to ensure that the interviews
stayed at or close to the expected time and to collect qualitative
data on parts of the task that could be completed even when some
agent components were not functional, as was the case in several
interviews with Operator. Appendix B contains our interview script.

4.6 Recruitment, Compensation, & Ethical

Review

We recruited participants by advertising on social media platforms
such as X and LinkedIn, as well as posting the study on Prolific. 841
prospective participants filled out an initial screening questionnaire
that we linked to from our social media post, fromwhichwe selected
13. We separately recruited 18 participants from Prolific, which
resulted in 𝑁 = 31 participants in total. These participants are listed
in Table 2. We selected participants to capture a wide breadth of
age groups, occupations, and prior experience with conversational
AI tools. Participants were compensated $25 for their interview via
Amazon eGift Cards or directly through the approval of Prolific
submissions. The study was approved by an institutional review
board (IRB).

4.7 Data & Analysis

Through the study, we collected the following data for analysis:

• Audio and screen recordings of end-users attempting each
task

• Online survey responses to a questionnairewith demographic-
related questions and responses to the System Usability
Scale [20] for each task

• Audio recordings and text transcriptions of the think-aloud
session and semi-structured interview

To analyze these data, we again used open inductive coding.
Our analytic focus was to answer RQ2: i.e., understanding what
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Task Manus Operator Total

Holiday Planning 10 10 20
Slide Making 13 10 23
Personal / Professional Development Stipend Budgeting 10 9 19
Total 33 29 62

Table 3: A decomposition of the 62 tasks users completed across 31 sessions.

barriers and usability challenges end-users faced while attempt-
ing the tasks we had assigned them to complete with the use of
an AI agent. The first and second authors independently coded
three interviews, to come up with an initial set of codes. They met
weekly and discussed the codes for multiple interviews, merging
and deduplicating codes when realizing they were either the same
phenomenon or variants that were different experiences altogether.
Across these discussions, they authors came up with themes that
explained general experiences that we interpreted participants were
going through as they navigated agent software. Our codebook can
be viewed in Appendix C.

4.8 Findings

Participants were generally able to complete both assigned tasks
with a reasonable degree of success — though we specifically se-
lected tasks that we verified were simple and doable prior to the
study. Nevertheless, we identified a number of critical usability
barriers that hindered participants’ ability to make optimal use
of the AI agents we tested. We will start by discussing where the
agents succeeded, general impressions towards the agents, and then
discuss the usability barriers we identified.

4.8.1 Agent successes. Out of the three tasks, participants were
most successful at Holiday Planning and least successful at Budget-
ing. Manus excelled at the slide making task, on which Operator
performed the worst. Operator was most successful on the Holiday
Planning task. Figure 8 presents the mean System Usability Scale
(SUS) [20] scores each task and agent received.

Overall, users were impressed and charitable in their perception
of both agents’ capabilities and usability, even when they could
not complete the stipulated task. As P23 stated: “This is worth it
in every sense of the word.” Note that none of our participants had
used AI agents prior to our study, so part of this reaction could be
attributable to novelty effects. Most users were generally satisfied
with their results, found that the agent provided useful information,
and praised the agents for their details: “it’s very comprehensive
and thorough” (P26).

4.8.2 Impressions towards Manus vs. Operator. Each agent had
unique strengths and weaknesses that made it better suited for
specific tasks.

Manus. All Manus users were impressed by its ability to turn
short prompts into detailed and “visually appealing” slide decks.
P26 commented that they would not themselves have invested as
much effort in slide design: “Compiling this personally would have
taken days or weeks.”

Yet, in almost all cases, participants were not ready to present the
final slide deck, expressing a desire to edit due to concerns with the
density of text content and dissatisfaction with the image quality.
P31, for example, stated:

unless it was like a webinar where I’m giving it over the
computer. And everyone else is just watching on their
computer screen. That might be acceptable. But I’m
thinking, like an actual in person presentation, where
these things are gonna be displayed like on a wall, or
something behind me.

P30 shared: “I don’t like the way they just threw the words on top
of the images.”

Moreover, a recurring complaint about Manus was the volume of
its workflow logs and the speed at which it generated them, which
far exceeded the bandwidth of users following along.

For the budgeting and holiday planning tasks, a common request
was for links and interactive elements for each recommendation.
Without these links, the final deliverable felt incomplete and neces-
sitated additional work from the user to act upon.

Operator. Participants appreciated Operator’s minimal user in-
terface and quick responses, which were often presented in formats
that were easy to digest. As P19 stated: “it’s very organized in the
way it presents data...kind of like a spreadsheet”. However, partici-
pants were less impressed with the slow pace of Computer Use, the
frequent errors it encountered, and instances of it hanging without
communication. Many users noted that they could perform web
searches and actions much more rapidly by controlling their own
browser. However, users also observed that speed was not as critical
if they could run in the background while they focused on other
tasks.

4.8.3 Barrier: Agent capabilities and behaviors don’t align with user
mental models. AI agents have many unknown capabilities, making
it difficult for users to develop effective mental models of what is
possible and how to access agent functionality.

Users were apprehensive and uncertain about prompting agents.
End-users generally did not know what to expect when sending
an agent a prompt, leading to a behavior that we term “prompt
gambling”, i.e., users expressing uncertainty and hesitation with
prompting agents owing to concerns that it would generate unnec-
essary and excessive outcomes. As P22 stated: “Well, I’m kind of
afraid to ask this a question...Just because it takes so long”.

This uncertainty led to a range of different prompting strategies.
Some users believed they needed to decompose a task into individ-
ual steps, and have an agent perform each step one at a time. These
users would craft an initial prompt with only the first step of the
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Figure 8: Mean System Usability Scale (SUS) [20] Scores by Task and Agent. The average experience with our chosen agents

and tasks was interpreted generally as Good (70-80) and Excellent (80-90), with Slide Making on Operator (69.2, Okay) and on

Manus (90.6, Best Imaginable) being notable exceptions.

task — but the agents they used would assume that this first step
was the full task, leaving users feeling trapped. Other users would
provide a highly detailed initial prompt to try and prevent agents
from going astray. The ultimate effect was that many participants
felt that the initial prompt they fed to the agent was high-stakes
and essential to get right. “You’ve got to sit there and make sure that
your initial prompt is perfect . . . You ask exactly what you’re looking
for.” (P26) Similarly, P30 echoed: “If I were more specific, I feel like I
would have gotten this on the first try.”

In other cases, users expressed being pleasantly surprised at how
much the agent was able to do with relatively little specification on
their part: “I thought I needed to give it source material for the slides,
but it did all the research and organized it in slides that would’ve
taken me weeks to put together.” (P26) In these cases, participants
were able to gradually update their model of the agent being less
like a deterministic tool that required structured hand-holding and
more “as if it were an administrative assistant” (P9). This confusion
— while not stifling — still indicates that the affordances of agents
were a mystery to users; users’ conceptions of what an agent could
do arose only after trial-and-error, and even then remained task-
specific and incomplete.

Users had trouble understanding what agents did, and why. Mul-
tiple users expressed confusion about what “Computer use” was
and how it worked. Attempting to make slides, Operator repeatedly
asked users to use the Take Over functionality to sign in to Google
Slides, which came across as unexpected and undesirable behavior.
One user expected the slide outline and designs to be presented
before being asked to log in to a tool. Furthermore, they expected
slides to be prepared within Operator, unaware that slide making

was not part of the native functionality. In addition, they misunder-
stood the scope of the Take Over functionality, believing it was a
request for them to make the slides, as opposed to a request to sign
in and return control to the agent. P19 stated of the “Take Over”
functionality: “it’s kind of like I’m giving you a job, and you’re
throwing the job back at me...You have not even given me anything
yet, and you want me to do some stuff for you already.”

A more technically knowledgeable participant questioned the
need for Computer Use altogether, and instead wanted the agent
to use web APIs for research tasks instead of having the agent
control a browser. Computer Use was perceived as being drastically
slower than participants’ own ability to perform the same searches
manually.

Some participants also developed folk models of how interim
agent outputs might contribute to an agent’s overall speed. For
example, noting the large amount of interim progress the agent
reported on, P31 wondered if disabling workflow logs would hasten
task completion:

if I could maybe turn off the you know. Show me what
you’re thinking part. . . if that is, you know, causing
a slowdown, then I would be interested in having the
option of. . . disabling that to, you know, speed up.

In short, AI agents are very capable — so much so that the simple,
unassuming chat-based interface leaves too much to users’ imagi-
nation. This results in confusion about agents can do, what they
need from the user, how they work, and what the user’s role is in
the process of completing the task.
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4.8.4 Barrier: Agents presume trust without demonstrating compe-
tence or security. Several participants expressed a distrust in work-
ing with AI agents to perform either specific parts of a task or the
task as whole. Trust issues with each of the tools spanned concerns
around hallucinations, password management, low expectations
of agents’ capabilities, and disinclination to hand over too much
autonomy over tasks users preferred to handle personally.

Not all users wanted to trust the agent with credentials to their
accounts: “I don’t particularly want to give it my Google account
information” (P30).

Some users also expressed apprehension about entrusting the
agent to do tasks on their behalf, such as planning a trip: “I would
plan manually first, then compare. . . I still don’t trust it completely”
(P26). P22 further explained how these trust issues were com-
pounded by the fact that the agent did not ask them questions
about their preferences or constraints: “it didn’t ask me. you know.
Do I want one bed or 2? Do I want a a room that looks out on the
pool? Or do I want one that looks out on the plaza?” This example
highlights how trust-building is discursive; for tasks that require
capturing personal preferences, overly eager agents that run off
and do work without confirming user intent can reduce trust.

Several participants also expressed concern about the veracity
of the information agents provided, especially when the values
conflicted with a priori expectations or seemed too good to be true.
For example, when reviewing car rental data, P26 stated: “Car rental
Fiat 500 at $10 a day. . . like, how do they make any money?”

4.8.5 Barrier: Agents fail to accommodate a diversity of collaboration
styles. Many of our participants expressed uncertainty about how
to “collaborate” with agents to accomplish tasks. For example, users
were uncertain about what they could delegate, how they could
exert more control, and how to recover from errors.

Users lack effective control mechanisms for steering agent behavior
during task execution. When agents failed or otherwise produced
poor initial outputs, several users believed that it would be faster
and more effective to restart from scratch as opposed to asking the
agent to iterate on the provided deliverable. They did not believe
the agent could effectively make fine-grained edits. P31 captured
this feeling when expressing confusion as to why the agent was
able to easily create new slides, but had trouble following more
detailed instructions to iterate on these slides:

“I remember the original one. I mean, it had, like maybe
one more block of text on the left hand side, and just for
it to remove, you know, that seemed like it took longer
than you know, creating all 7 other slides. So that was
kind of I don’t know why it got so caught up on that.”
–P31

Users also expressed wanting better real-time control mecha-
nisms to supervise the agent and ensure it stayed on track. Partici-
pant 26 expressed this tritely, “I’d like a pause button if it’s going off
the rails.” Similarly, P23 expressed wanting a “stop button” to exert
more control over how long the agent worked per prompt.

Othersmissed orwere hesitant to obligeManus’message inviting
additional prompts even while it was responding to a previous
prompt. These participants questioned if sending a new prompt
would derail the agent or otherwise cause it to lose progress.

Users vary in the level of proactivity they would like out of agents.
We observed strong variation in how involved individual users
wanted to be with crafting the final output delivered by the agent.
For example, for the slide making task, some users were interested
in being deeply involved with the design of each slide, whereas
others were content with the agent proposing its own outline and
building a slide deck around it, with little involvement from them.
P26 shared: “I would plan manually first, then compare. . . I still don’t
trust it completely". Similarly, P9 mentioned “my typical way of
doing this kind of thing is to build all this as independent units on my
own."

More generally, we found that some users viewed agents as
thought partners while others viewed agents as execution tools. P16
was emblematic of the former camp: “I like to do some of the baseline
stuff myself. . . use AI more as. . . confirmation...making sure that what
I’m taking away from something is maybe correct. . . and then kind
of just verifying that I didn’t miss anything” Agents generally did
not appear to account for this variation, and tended towards being
over eager execution tools — i.e., assuming users wanted minimal
overall involvement.

Agents made incorrect assumptions about users, leading to miscal-
ibrated outputs. Agents also appeared to sometimes make incorrect
assumptions about users which could lead to deliverables that were
misaligned with user expectations.

For example, for the Slide Making task, P30 requested that the
agent make a slide deck about bats. The final slide deck the agent
produced was minimal — just a stream of bat images with little text
to scaffold the rationale for each image. This lack of scaffolding
left P30 feeling frustrated, and feeling like the agent made a faulty
assumption: “It thinks I’m an expert at bats, but I don’t know much,
and I certainly can’t present a talk with slides that just have photos”.
P30 further expressed wanting to explicitly specify roles and ex-
pectations in the collaboration: “Hey, I’m really good at doing this.
These are things that you might need. I might need your help on . . . .”

Similarly, for the Trip Planning task, P13 found many of the
travel suggestions the agent made to be fairly basic, and only nec-
essary for people taking a flight or visiting a country for the first
time, an assumption that they believe the agent had made incor-
rectly. “I would call myself like an experienced traveler, so that I don’t
necessarily need like the currency or ‘smiling in public’ that kind of
thing. So maybe one of the questions for personalizing it could be you
know are is this, are you new to traveling? Is it your 1st trip? Will you
be with family? Just kind of gauging where you are with travel.”

Users struggle with recovering from agent errors due to opaque
failure modes. Agents occasionally made errors as they attempted
to complete tasks — indeed, 14 out of 31 users encountered at least
one operational error during the study, such as the one shown in
Figure 9. However, many users struggled with recovering from
these errors.

In particular, for Operator’s Computer Use, many users did not
even register errors when they did occur. Operator generally froze
in these circumstances with no error message or troubleshooting
instructions, leaving users uncertain: “I wasn’t quite sure why it was
failing.” (P7) As a result, many users attributed Operator’s lack of
progress to arbitrary causes such as websites being incompatible
with Operator, security settings on the user’s computer, or because
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Figure 9: OpenAI Operator, working on the slide making

task. Frequently, it was blocked while connecting to online

presentation software, potentially due to anti-bot protection.

of their own errors. P30, for example, said: “I didn’t realize it was
failing... that could just be my own ignorance of the platform it was
using.”

These situations required the interviewer’s intervention, after
many attempts by users to adjust their prompt in anticipation of
comprehension difficulties.

4.8.6 Barrier: Agents create an overwhelming amount of communi-
cation overhead. Another critical barrier we observed related to the
communication overhead agents created: both in users needing to
effectively articulate exactly what they wanted out of agents, and in
their needing to make sense of the overwhelming amount of output
agents produced as they executed tasks at the users’ behests.

Users have varying expectations around communication of agent
progress. We observed a full spectrum of expectations and pref-
erences when it came to how agents should communicate task
progress to users.

Several users (e.g., P16, P24, P31) expressed little interest in the
agent communicating intermediate progress: they entirely ignored
pages of intermediate logs, stating that their key performance indi-
cators were based solely on the final deliverable. For example, P31
shared: “I just want the thing done, but not necessarily know how it’s
done.”

Other users (e.g., P21, P22, P23) appreciated when agents re-
ported on their progress. As P21 noted: “ I always like it when I see
the thought process of the AI to know why it chose a certain route.”
P23 expressed even more enthusiasm: “I love to see actually the mind
working...I just think that’s amazing.” However, while many of these
users were interested in reading intermediate progress outputs from
the agent, they found doing so difficult. These users expressed that
key progress milestones were buried within paragraphs of identi-
cally formatted text that flew by too quickly, making it hard for
them to validate search queries and other GUI actions that agents
took.

The only thing is, I don’t know what some of this stuff
means with Manus like where it’s saying, “scrolling
down” and “clicking element”, and I don’t know if that’s
the thing not operating quite right, or if it’s just jargon

that I just don’t, really, I’m not familiar with so. It just
looks weird. –P16

A third subset of users actively disliked the barrage of outputs
the agents generated as they completed their tasks, expressing
feelings of irritation, overwhelm, and exhaustion. P18, for example,
stated: “It’s just non-stop spewing.” Similarly, P16 stated: “It’s just
too much to take...Oh, my God! It threw out so much stuff...it’s almost
an overwhelming amount of information”. Some participants noted
that it was not the sheer volume of output but also that the output
was presented in a way that made sensemaking difficult: “It has the
UI that makes it seem as though it’s complex. But the information
that it’s sharing with you isn’t so complex.” (P20)

Prompting agents is a technical specification recall task that is cog-
nitively demanding. Many participants expressed that prompting
agents was difficult, because they were themselves uncertain about
how much they needed to communicate with the agent and how
best to communicate the web of interconnected preferences they
had in their minds.

something that might be obvious to a person, is maybe
not always obvious to the AI is needed information. So
it doesn’t think to ask, and you don’t think to tell it and
then realize there’s a gap. –P16

For instance, for the Slide Making task, users expressed a desire to
directly modify slides agents had initially improved, rather than
asking the agent to iterate on those slides. These users believed it
would be too difficult to articulate, in a way agents might be able to
understand, their criteria for what they wanted to improve. They
simply wanted “better images” or “less text-heavy” slides.

Similarly, on the Trip Planning task, many people wanted to
pick flights themselves because of complex and often conditionally
intertwined criteria that would be difficult to express into logically
sound instructions (e.g., frequent flyer miles, number of stops, time
of day). The need to attempt to do so created intense metacognitive
demands for users, prompting P11 to speculate about a future brain-
computer interface that would eliminate this burden: “a neural
interface... like when typing the prompt, there’s often details, I forget
whether it’s like some preferences or whatnot. So if it can just like
directly absorb that to my mind, from like my brain, without me
having to type it, then that would just make like a much smoother
interface.”

4.8.7 Barrier: Agents lack the metacognitive abilities that enable
productive collaboration. Finally, we found that agents lacked the
metacognitive abilities to recognize their own limitations and to en-
able effective oversight by articulating their progress and challenges
in terms that users could understand.

Agents don’t know what they don’t know and can’t do. When
agents encountered difficulties or made errors, several users ob-
served that the agents would fail to recognize these errors and
get stuck in a repetitive loop. For example, for the Slide Making
task, Operator didn’t seem to recognize its inability to control some
slide-making websites, which remained frozen for extended peri-
ods of time. P16 noted: “It doesn’t have access to certain things, so it
couldn’t do it. And it just was kind of circling.” P16 then lamented
that had they taken more initiative in troubleshooting, they would
have been able to compensate for the agent’s failure to recognize
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its limitations, highlighting metacognitive gaps that users must
sometimes cover.

Users expressed a desire for agents to express greater metacogni-
tive reflective abilities. For example, for the Personal Growth In-
sight task, P20 noticed that Manus hallucinated information about
courses that didn’t exist at all, even when synthesizing information
from Web searches. In this situation, the user (P20) preferred a
different response: “it’s seeking to provide an answer rather than to
say, I don’t know, or to link someone where they should go to find
information.” Similarly, for the Slide Making task, P19 expected the
agent to take more active role in seeking critique to improve the
design: “It probably covered like 70 to 80% of what I was expecting. I
was waiting for it to ask me for some more information.”

Agents use tools with which users are unfamiliar, precluding effec-
tive oversight. Andy Grove, long time CEO of Intel, once famously
wrote: “Delegation without oversight is abdication.” We observed
that agents often used tools with which users were unfamiliar, in-
hibiting users’ ability to. We observed this use of unfamiliar tools
often in the context of the Slide Making task: agents unexpectedly
use programming tools to create slides. P29, for example, was sur-
prised by Manus’ decision to use HTML to make slides: “I wasn’t
expecting it to make the slides all in HTML!” When Operator did
something similar, P25 felt left out of the process and, therefore, was
pessimistic about success: “I see a lot of HTML coding and JavaScript.
Yeah. So I’m not too confident it’s going to come up with what I’m
looking for.”

5 Discussion

5.1 How does the tech industry conceive of “AI

agents”, and can end-users effectively use

them?

What exactly are “AI agents”, what can they do, and how well can
users actually use them for the purposes for which they are adver-
tised? Through a broad survey of the products and services that are
being advertised under this banner, we found that the tech industry
appears to conceive of AI agents as belonging to one or more of
three categories: Orchestration agents that operate GUIs on
behalf of users, Insight agents that summarize and synthesize
information for users, and Creation agents that convert user
intentions into structured documents. Through our user study, we
found that the agents we studied are highly capable and appear to
already provide value to everyday users — our participants were
generally successful at accomplishing their assigned tasks with
agents and were impressed by what those agents could do. Both
agents demonstrated the ability to formulate plans, make decisions,
and deliver on user goals in concert with human users, even if there
were rough edges in alignment, control, coordination, and creative
work with subjective acceptance criteria. As a result, although our
agents were unable to effectively interact with humans as true “part-
ners” with complementary expertise, and instead acted more like
talented “lone wolf” task mercenaries, our participants consistently
rated the agents as having “Good” to “Excellent” usability on the
System Usability Scale.

While this most recent incarnation of “AI agents” bring us closer
to realizing the longstanding vision of creating computational

thought partners that augment human intellect, our study also
identified several critical usability barriers that must be addressed
before AI agents can reach their full potential. First, agent capabil-
ities and behaviors are misaligned with user mental models.
For example, our users were uncertain about how to communi-
cate their intent to agents and lamented being unable to predict
what agents would produce based on their initial prompts. Second,
agents presume trust without first establishing credibility.
For example, our users did not feel comfortable delegating some
tasks to agents because they did not observe the agent asking
the right questions to elicit a user’s subjective preferences. Third,
agents fail to accommodate a diversity of collaboration styles.
For example, our users expressed a broad range of preferences for
how “proactive” they wanted the agent to be in task execution, but
agents did not account for this diversity. Fourth, agents create
an overwhelming amount of communication overhead. For
example, our users had trouble articulating, from scratch, the of-
ten complex, conditional, and intertwined preferences they had
for tasks. Fifth, agents lack the metacognitive abilities that

enables productive collaboration. For example, our users noted
several instances where agents could not recognize their own limi-
tations and got stuck in repetitive try-fail cycles that could have
been easily resolved by users directly.

5.2 Design Implications for Designing End-User

AI Agents

The interface agent paradigm challenged many user assumptions
internalized through years of experience with primarily direct ma-
nipulation interfaces. Our synthesis of end-user usability challenges
points us to several implications for designing the next generation
of agents, which we outline in this section, and condense in Fig-
ure 10.

5.2.1 “Know your user”: Agents should get to know the end-user.
Each end-user has unique skills, preferences, collaboration styles,
epistemological positions (i.e., preferred sources of information)
and communication preferences, which are valuable data for agents
to be aware of and rely on. Some of these characteristics are stable
across tasks, whereas others vary by task. We recommend that they
be elicited using recognition-based UIs and ideally in an on-demand
fashion to avoid overwhelming the user with a deluge of questions.
We hypothesize that collecting these preferences will help build the
user trust the agent and feel supported by a deeply personalized
experience. In particular, they will address usability barriers around
agents’ inflexible collaboration styles, communication overhead,
and erroneous presumptions of trust. As Horvitz alludes [36], agents
must strike a delicate balance between the risk of annoying users
by asking too many questions and that of losing the user’s trust by
making invalid assumptions.

5.2.2 “Know yourself”: Agents should have improved “metacogni-
tion”. The agents we tested had trouble reflecting on the actions
they took and the outputs those actions produced. For instance,
both Operator and Manus chose to operate a computer for tasks
when performing an API-based web search would have been faster;
our users also noted that agents would fail to recognize when they
encountered errors and fall into unproductive loops. Agents should
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Figure 10: Mapping five empirically discovered usability barriers to six implications for next-generation AI agent design.

be designed with stronger “metacognitive” abilities that help them
recognize their own limitations, when they have encountered er-
rors that would be difficult to solve themselves, and when a shift in
strategy may be necessary. For example, agents might recognize
when the output of a previous action does not align with theirs or
the user’s expectations, and attempt to diagnose if they should stay
the course, change strategies, or ask users for assistance.

5.2.3 “Be adaptable”: Agents must adapt their interface based on
their knowledge of the task and the end-user. Across all tasks, both
agents sent several distinct categories of messages to users: ques-
tions to elicit user input, workflow and UI action logs to commu-
nicate progress, and links to deliverables for the user to review.
Users reported being overwhelmed by the amount of information
produced by agents (Section 4.8.6. With knowledge of the type of
task they are attempting to perform and knowledge of the user’s
preferences, agents should employ stronger visual hierarchy and
principles of progressive disclosure to reduce communication over-
head and keep users appropriately abreast of progress without
overwhelming them.

For example, Orchestration tasks benefit from an increase
in screen space dedicated to the computer stream, as the agent
performs direct manipulation of third-party software. Insight tasks
benefit from rich, interactive elements and citations to information
sources, so they can trust the information and organize it more
clearly. Finally, creation tasks may have both an “advanced” mode
in which users can peruse source code and other implementation
details, and a “simple” mode where these details are abstracted
away and only the final output is shown.

5.2.4 “Measure twice, cut once”: Agents should support user control
during both planning and execution. A common challenge faced by

users was their inability to control the behavior, collaboration style,
task requirements, and many other aspects of an agent’s execution
plan once they submitted an initial prompt. Coupled with users’
unclear mental models of agents, their capabilities, and plan of
action, this interaction pattern disconnected the user at a critical
moment in their journey from specifying their requirements to
obtaining a desired deliverable. Agents presently allow users to
“Take Over” only during the execution phase of work, but they
should also allow users to “Take Over” during planning.

In the planning phase, the agent might engage with the end-user
to develop a shared plan of action, at which point the user would
sign off, and then the agent would execute. The aforementioned
plan would include an enumeration of the steps involved, the tools
the agent will use, the expected user actions, and a description of
the interim deliverable for upcoming turn of iteration, after which
the user potentially provides new directions. Co-creating plans
with users could have the added benefit of exposing users to agent
capabilities, limitations, and expected outcomes, as well as clarify
their role in the process, all of which are needed for smooth collab-
oration. We expect this to significantly reduce challenges related to
user-agent misalignment and support diverse collaboration styles,
since the user is explicitly given the opportunity to coauthor agent
plans. Critically, it provides an opportunity for the agent to deter-
mine if the task cannot be completed, which may occur if it requires
capabilities beyond those of both parties [73].

5.2.5 “Show, don’t tell”: Agents should support a plethora of input
modalities, beyond textual prompts. Purely free text-based controls
are not commonplace in most software used for knowledge work.
They are fragile because they resemble recall-based specification
writing without well-known best practices and feedback. In addi-
tion, they are error-prone and time-consuming, as corroborated by
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several of our study participants. To address these challenges, we
propose three recommendations.

Template-based task specification. First, we recommend provid-
ing effective prompt templates for well-known tasks. Templates can
help scaffold users who are not familiar with prompt engineering
and those working on a new task by providing users with tried-
and-true recipes that work well. They reduce the likelihood that
critical input data is left unspecified, by making omission an ex-
plicit decision. This template-based approach aligns with a popular
software design philosophy that originated from the Ruby on Rails
community: “convention over configuration” — software should
aim to reduce the number of decisions users take by making the
most common and sensible ones the default.

Recognition over Recall. Second, we recommend that agents sup-
port input modalities that prioritize recognition (e.g., selecting from
a known list of options) over recall. In addition, to support users
working on tasks with multiple serial dependencies, they should
surface user input on important dimensions that non-trivially influ-
ence a given task’s success earlier, especially if these requirements
are challenging to incorporate later in the process.

Programming-by-Demonstration. Third, agents could consider
supporting programming-by-demonstration (PBD) paradigms [27]
for situations where tasks have many intricate requirements and
steps that are challenging to explicitly specify. For example, when
entering data in legacy software, PBD can help provide agents with
the idiosyncratic knowledge needed to efficiently complete them.

5.2.6 “Next time’s the charm!”: Agents should support precise itera-
tion. Finally, agents should better support iterating on final deliv-
erables. Many users in our study expressed not trusting agents to
make small, iterative improvements on the outputs they initially
produced. Yet, knowledge work often has subjective and evolving
acceptance criteria that makes iteration the rule, not an exception.
As a result, agents must simplify the iteration process for the user
to maintain trust, empower users [36], and minimize divergence
from expectations. Iteration can be better supported by provid-
ing the user with context-sensitive controls that they can operate
while the agent is executing and after it has produced a deliverable.
Providing these controls is especially important to consider when
the output has non-textual components (music, slides, and videos
come to mind). Examples of such controls can include interface
elements that adjust the agent’s speed of execution and even pause
it, configure the quantity of research based on initial results, skip
steps that may now be redundant, and allow the user to provide
real-time feedback on the output as it is being constructed.

5.3 Limitations

As with any empirical study of an emerging technology, our study
has a number of limitations related to the tasks we developed, the
composition of our pool of participants, and the dynamism of the
product space. Our user study features three sample tasks, which,
while representative of the use cases from our taxonomy, cannot
cover the breadth and depth of tasks found in modern digital knowl-
edge work. Next, our group of participants comes exclusively from

the US sociocultural context, is young, able, and comprises fre-
quent users of generative AI tools. Finally, we chose the desktop
versions of two state-of-the-art commercial AI agents from a large
and rapidly expanding space of agent software, whose models, ca-
pabilities, interaction paradigms, and resulting usability challenges
may differ.

6 Conclusion

In this study, we created a taxonomy of industry-marketed use cases
of AI Agents, finding that they broadly fall into three categories:
orchestration, creation, and insight. We next performed a user study
where participants attempted tasks in two of three categories on
two commercial AI agent products: OpenAI Operator and Manus.
While users achieved reasonable success at completing tasks, our
study revealed five critical usability barriers: (i) agent capabilities
are misaligned with user mental models, (ii) agents presume trust
without establishing credibility, (iii) agents fail to accommodate a
diversity of collaboration styles, (iv) agents generate an overwhelm-
ing amount of communication overhead, and (v) agents lack the
metacognitive abilities that enable productive collaboration. Based
on these results, we propose several recommendations to address
these barriers. AI agents should: learn user preferences to build
trust, understand and account for their own limitations, adapt their
interface to the task at-hand, support user control in both the plan-
ning and execution phases, allow for non-textual communication
of intent, and afford precise iteration over initial outputs.
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A Systematic Review Codebook

Table 4: Codebook: Taxonomy of Marketed Use Cases for AI Agents

Category Code Name Definition

Orchestration Output Purpose Produces executable actions or commands.
Direct UI manipulation Agent interacts with software interfaces on the user’s

behalf.
GUI Automation Clicking, scrolling, or selecting elements in a graphical

interface.
Terminal Automation Running shell or command-line instructions.

Creation Output Purpose Generates new content shaped by user input.

Writing Producing text-based outputs.
Emails Drafting structured, professional or personal communi-

cations.
Articles Creating longer-form written content.
Marketing fliers Designing promotional or advertising copy.
Letters Generating formal or informal correspondence.
Website and Application Devel-
opment

Writing software, websites, or applications.

Images Producing static visual content.
Music Composing audio tracks (limited commercial viability).
Videos Generating video clips or animations (emerging).
Sound Creating audio effects or spoken content.

Insight Output Purpose Refines data using cognitive and analytical meth-

ods, to guide decision-making.

Research Gathering and synthesizing external knowledge.
Information Retrieval Providing factual or domain-specific information.
Insight Drawing conclusions or highlighting patterns.
Data Analysis Processing and interpreting structured or unstructured

data.
Evaluation Using the model to judge, score, or refine outputs.
Synthesis Combining multiple inputs into a coherent whole.
Recommendations Offering next steps, decisions, or actions.

B User Study Script
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Interviewer: Hi, thanks for participating in our research study
on AI agents! I’m [First Interviewer Name], the Principal In-
vestigator. Before we start, please make sure you’re in a private
space.

Confirming participant eligibility.

(1) Interviewer checks if the interviewee filled out the consent form
emailed to them, and if not asks them to fill it out.

(2) Interviewer asks the interviewee if they are a person, by asking
them to come on video, and then turning it off.

(3) Interviewer asks the participant to share their screen and open
IPInfo, https:// ipinfo.io/ country, which displays a page with
just a 2 letter country code. US confirms they are connecting to
the site from the United States.

(4) Interviewer ensures participant is connected via a desktop com-
puter (as opposed to mobile / tablet).

If the interviewee does not satisfy all the above criteria, they are
asked to leave.

Interviewer:We will be recording your audio and screen, so we
want to make sure other people aren’t accidentally in the recording.
Please turn off your video. Please refrain from sharing any identi-
fiable, personal or sensitive information about yourself or others
you would not want shared outside the research setting.

Interviewer: Here is a link to the form with survey responses:
[Link to online survey on Qualtrics].

Interviewer: Please close tabs that contain personally identify-
ing information, and share just the window with two tabs with me,
one for an agent, and the other with the form open.

Interviewer: Let me know once you’re ready.
Wait for the participant to load the survey and is ready.
Interviewer:We’re recording now. Here’s what our session will

look like. We’re going to have you attempt two tasks, each using
one of two agents:

• Manus (https://manus.im), a general-purpose AI agent.
• Operator (https://operator.chatgpt.com), a computer-using
agent.

Interviewer: After each task, you will complete the question-
naire. We will conclude with general questions and confirm your
email address for the gift card.

Interviewer randomly chooses two tasks and tools.
<Task 1 script from Appendix B.1>
Interviewer asks the participant questions including and beyond

those from Section B.2.
Participant will fill out their UID as assigned by the PI. They will

fill out the task 1 questions on the questionnaire.
<Task 2 script from Appendix B.1>.
Interviewer asks the participant questions including and beyond

those from Section B.2
Participant will fill out the task 2 questions on the questionnaire.
Interviewer: Thank you for participating in this study, we’re

all set.
Participants from Prolific are approved from the study dashboard.

For those from social media outreach, confirm their email address
before we exist, and purchase a USD 25 Amazon eGift card after the
session.

B.1 Task Script

Interviewer: Here are the credentials we’ll be using for Manus /
Operator.

Interviewer will send the user a temporary 1Password link to cre-
dentials for the respective agent, and a link to the agent, that they
will open in an incognito window.

Interviewer:Welcome to [Agent]. You’ll now use a tool that
lets you talk to an AI assistant, similar to ChatGPT. In this system,
you type your goal or request, and the assistant will respond and try
to help. This tool may include memory, workflows, or documents
that the assistant can reference as it helps you. Try to complete the
task using the assistant however it feels natural to you.

Holiday Planning (Orchestration). Imagine you’re traveling to
a city you’ve never visited. You will use the AI Agent to produce
an itinerary including flight tickets, housing, activities, and any
sightseeing in a new city you’re going to on holiday. As you go,
you’ll be able to revise your preferences or ask the agent to change
plans. Any questions?

Slide Making (Creation). You will be using [agent] to create a
slide deck for a 10 minute talk on a topic you’re interested in. You’ll
have 20 minutes for this task. As you work on the task, I’d like you
to talk through your thought process. Once you’re done, I’ll ask
you some questions, and you’ll answer some survey questions. As
you go, you’ll be able to revise your preferences or ask the agent to
change plans. Any questions?

Personal / Professional Development Stipend Budgeting (Insight).
Imagine you’ve received a USD 2,000 personal and professional
development stipend that expires after 90 days. You will be using
Manus / ChatGPT Operator to create a table with the purchases,
the cost, and why this is aligned with your life goals. The purchases
must be related to education, health, or career. You’ll have 20 min-
utes for this task. As you work on the task, I’d like you to talk
through your thought process. Once you’re done, I’ll ask you some
questions, and you’ll answer some online survey questions. As you
go, you’ll be able to revise your preferences or ask the agent to
change plans. Any questions?

B.2 Sample Questions for Semi-Structured

Interview

• If you could wave a magic wand and change one aspect of
the user experience, what would that be?

• Going forward, how would you complete this task?
• Was there anything that surprised you during the experi-
ence?

• Were there any moments you weren’t sure what to do next?

C User Study Codebook
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Table 5: Codebook: User Experience Codes for AI Agents

Code Name Definition

AccuracyConcern User questions whether links/data are trustworthy (“is
it hallucinating?”)

VerificationRequest User asks the agent to cite or link to verifiable sources
PaymentTrust Willingness to let the agent initiate or complete a pur-

chase
CredentialTrust Willingness to let the agent log in or handle sensitive

credentials
CredentialDistrust Reluctance to let the agent handle credentials or sensi-

tive logins.
OperatorFailure Operator Computer Use failed enough to need PI inter-

vention
TaskCompletionPerfect No changes to the deliverable
TaskCompletionHigh Minimal changes
TaskCompletionPartial Big picture, but lots of manual editing
TaskCompletionNone No progress on task
MissedPreferences Failing to honor user-stated preferences or require-

ments
OutlineDeviation Not following the user’s requested structure or outline
BudgetOverrun Exceeding allotted budget or resources
DateError Using the wrong year (e.g. 2024 vs. 2025)
LinkOmission Forgetting to provide critical booking or reference links
OverResearch Spending too much time on background research vs.

deliverable
ComponentFailure A sub-component of the agent did not work as expected
TaskAvoidance Operator skipping or being unable to complete core

steps
SlidesImageQualityIssue Images in slide deck were unacceptable to user
SlidesTextDensityIssue Slides or outputs overwhelmed with too much text
AgentTooSlow User labels the agent response taking more time than

acceptable
AgentAcceptableSpeed User labels agent as taking an acceptable amount of

time
AgentFastResponse User labels agent as being lightening quick in respond-

ing and completing the task
NewInfoExposure Users felt they learned or discovered new information
CommunicationClarity How clearly the process was explained or narrated
WorkflowTransparency Visibility into how inputs produce outputs over time
OutputClarity How understandable the results or deliverables are
OutputHardToFind User struggles to know if task is complete and where

to access deliverable
ErrorCommunicationConfusion Something goes wrong but user doesn’t know what,

and how to troubleshoot
HighTextLoad Too much text output by agent
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Code Name Definition

VisualComplexity Busy layouts, with many screens and lots happening
simultaneously

UndiscoverableFeature User expresses desire for an action that is possible but
cannot be identified

InterruptHesitation Users hesitate to interrupt when they want to course
correct

DesireToTakeOverProcess Users want to do something themselves
DesireToLeaveAgent User is frustrated or hits a problem, and wants to switch

to a manual process or use an external tool
StrategyMisalignment Agent follows a different process from user’s expecta-

tions
ThirdPartyWorkflow When Operator tries to use 3rd-party tools instead of

completing the task in situ
PerceptionAgentMismatchedForTask Belief that the agent is not suited for the user’s task.
DislikedComputerUse Negative reaction to relying on computer interaction.
UserPrefersDirectManipulation Preference for manual control over mediated AI use.
PerceptionGoodForAsynchronous Use Viewed as better fit for tasks done over time, not live.
PerceptionSuggestionsAreKnown Agent suggestions feel obvious or redundant.
PerceptionTakeControlDefeatsThe
PointOfAgents

Too much user control undermines the value of an
agent.

PerceptionOperatorAestheticsDelight User enjoys design/look of the interface.
PreferenceBreadthBeforeDepth User wants broad options before deep exploration.
ExpectationUseMemoryMore Expectation that agent should remember context better.
PerceptionUnderwhelmed Agent output felt unimpressive.
PerceptionSlowerThanHuman Agent perceived as slower than manual work.
WishDeeperPersonalization Desire for more tailored outputs.
UserIsSatisfied Expression of positive outcome with no issues.
ResearcherPromptToConverge Researcher intervenes to guide the session.
TooltipsAreSuperfluous User finds on-screen help unnecessary.
PerceptionMarkdownSourceIsConfusing Markdown/raw text presentation confuses user.
PerceptionComputerUseBadFit Belief that computer use is poorly matched to task.
DislikedComputerStream User dislikes continuous text streaming.
LikedComputerStream User enjoys continuous text streaming.
PromptStrategyBigInitialPrompt User attempts large all-in-one prompt.
UserIsImpressed Agent exceeds expectations.
EasyToUse Agent feels simple and intuitive.
DesireToTweakOutput User wants fine-grained editing ability.
PromptStrategyStepByStep User prompts iteratively in smaller steps.
FeltSentient User perceives the agent as humanlike.
NextStepsUnclear User unsure what to do after agent’s output.
MentalModelChanged Interaction shifts user’s understanding of the system.
AgentIsIntelligent User describes the agent as smart or capable.
VisualCommunicationDesired User wants visual aids like diagrams/maps.
ComprehensiveAndDetailed Information Agent delivers thorough, detailed content.
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Code Name Definition

ProvidedUsefulInformation Output deemed helpful.
CapturedPreferences Agent retained and applied user preferences.
StrategyAligned Agent’s approach matched the user’s intent.
ErrorCommunicationClarity Errors explained clearly (or lack thereof noted).
PerceptionComputerUseGoodFit Belief that computer use suits the task well.
SlidesDesignPraise Compliments on slide aesthetics.
UserAgentMisalignment Misfit between agent’s behavior and user’s needs.
SlidesLayoutOrDesignIssue Problems with slide formatting or design.
PerceptionPlainText Information IsDifficult-
ToMakeSenseOf

Plain text seen as hard to interpret.

UserWantsSocialProofForInformation Desire for references or validation of info.
WishOutputMoreInteractiveAndRich User wants multimedia/interactive results.
UserLikesTheAbilityToInterrupt Appreciates being able to stop agent mid-task.
WishLessCommunicative Prefers fewer explanations or chatter.
PerceptionCommunicationSlowsTaskCom
pletion

Belief that agent’s communication delays progress.

UserWantsDirectManipulation Wants manual control rather than agent mediation.
UserDoesNotWantWorkflowLogs Prefers not to see step-by-step logs.
CommunicationIsRedundant Agent repeats unnecessary information.
PerceptionEditsTakeTooLong Editing with agent is seen as slow.
OutputFileNotPortable Output format is inconvenient to share.
PerceptionMakesAssumptions Agent assumes details not provided by user.
PerceptionNotPersonalizedEnough Response felt generic or untailored.
PerceptionDidNotAskQuestions Agent failed to clarify user intent.
CommunicationIsNotClear Agent’s output or instructions lack clarity.
OpinionAIReplacesHumans User reflects on AI taking over human roles.
PerceptionNewUserExperienceUnfamiliar First-time use felt confusing.
UserDoesNotWantToAuthenticate Reluctance to log in or provide identity.
UserIsConfused User expresses confusion.
WishSkillsAndStrengthsPreview Desire to see what the agent can do upfront.
AgentUsedToolUserIsUnfamiliarWith Agent invoked tools unknown to user.
WishMoreCommunicative User wants more explanations or conversation.
DesireDarkMode Request for dark-theme interface.
DesireSimpleAndAdvancedInteraction
Mode

Wish for toggle between basic and advanced use.

DesireForSimplerProcess User wants fewer steps.
UserIsDissatisfied Negative reaction to overall experience.
AgentIgnoresUserNeeds Agent fails to account for stated requirements.
PromptStrategyUsedAmbiguous Keywords User inputs vague terms in prompts.
AgentIsResponsive Agent replies quickly and appropriately.
AgentUsesNicheTools Agent employs specialized or obscure tools.
PerceptionTimeElapsedHeightensExpectati
ons

Longer wait raises user expectations.

AgentSavesALotOfTime Agent perceived as time-saving.
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Code Name Definition

UserLovesToExploreTheTool User enjoys experimenting with the agent.
OutcomeQualityExceedsThatOfManualPro
cess

Results judged better than manual work.

UserConfusedAboutTaskInputs User unsure what input is required.
PerceptionEffortToProduceIsLow User feels little effort is needed to create output.
PerceptionUserHasLowInvestmentInAICre
atedDeliverables

User less attached to AI-produced results.

PreferenceRestartTaskInsteadOfEditDelive
rable

Prefers starting over instead of editing.

DesireToRestartFromScratch Wants to redo from beginning.
DesirePauseAgentToReviseWork Wish to halt and revise output mid-flow.
ObservationFirstPromptHasHigh Impact First prompt shapes overall results strongly.
DesireCompareManualProcess Wants to contrast AI vs manual process.
PerceptionDoNotTrust User expresses distrust in the agent.
PerceptionPartialWorkIsValuable Even incomplete outputs seen as useful.
DesireHideTaskBar Request to remove or hide task bar.
DesireToUseAgain User wants to reuse the agent.
DesireCitationsAndSources Desire for references backing outputs.
InteractionExperienceUsedVoiceMode User interacted with the agent via voice.
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