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REASONING ABOUT PRIVACY LEAKAGE
We present a framework for precisely characterizing privacy
leakage. This framework:
• Highlights necessary conditions for data leakage
• Hides low level details needed for an attack
WHY THIS TYPE OF MODEL?
Consider Caches Attacks and the resources they modulate…

They all leak the program memory access pattern.
This is the relevant information for software defenses.
FRAMEWORK FLOW

A. Does the optimization modulate a
hardware channel as a function of:
data in use (being operated on) or,
data at rest (not being operated on)?

B. Refine the analysis to precisely indi-
cate:What is being leaked, andwhen?

C. What function of the operands leak?

Cache Attacks
Prime+Probe,
Flush+Reload,
Flush+Flush,
and more!

Modulated Resources
Cache Occupancy,

Replacement Information,
CPU Interconnect,

and more!

UARCH WITH NOVEL PRIVACY IMPLICATIONS

We analyze each optimization relative to a
“Baseline” architecture. The baseline represents a
typical commercial server processor (out-of-order,
speculative, multi- core) based on known attacks today.
Each column represents the same baseline plus the
specifiedmicroarchitectural optimization.
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CONCLUSION
Proactively understanding the security implications
of ‘exotic’ microarchitecture is of fundamental
importance for building holistic, long-term,
defenses and anticipating future attacks.
This paper performed a systematic study of the
computer architecture literature through a security
lens. We found a range of microarchitectural optimizations
with novel security implications—ranging from ones as
devastating as Spectre/Meltdown (but without relying on
speculative execution) to ones that render constant-time
programming ineffective, or in need of overhaul.
Microarchitectural Leakage Descriptors (MLDs) present a
starting point towards communicating exactly the
information essential for software to implement per-
formant and secure defenses, while hiding second-order
details about the hardware.

EXAMPLE MLD: COMPUTATION REUSE
Minor, performance-guided, decisions can result in
significantly different security implications.
V1. One variant of Computation Reuse skips computations
(forwards the result) by using operand values as memo-
ization table keys. This leaks data values!

V2. A second variant uses operand register IDs. This
only leaks control flow.

MICROARCHITECTURAL LEAKAGE DESCRIPTORS
(MLDS)
The paper develops a novel conceptual framework and
abstraction, called Microarchitectural Leakage Descriptors
(MLDs), that characterizes privacy leakage precisely.
An MLD is a map that indicates when a micro-
architectural optimization changes a program’s
observable execution (e.g., based on timing or hardware
resource usage) as a function of what changes to what
program data.

EXAMPLE MLD: SILENT STORES
The silent stores optimization skips stores which do not
change the value already in memory, reducing
pressure on the memory system.

Silent stores can be thought of as having two inputs:
The in-flight store data (in use) and the data already in
memory (at rest). Depending on these values, silent
stores maps to two, distinct, observable outcomes.
• Active attack: If the attacker controls either input,
they can perform a search over multiple replays to
leak the other operand.

• Passive Attack: The program can leak its own data. All
stores become potentially latent gadgets.

SILENT STORES POC ON BITSLICE AES128 ENCRYPTION

It’s non-trivial to convert a sin-
gle silent store into a timing
difference. We develop an am-
plification gadget. Attacker
induces a silent store, condi-
tioned on thedata left behind
in memory by the victim’s
prior encryption operation.
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1) Attacker activates the prefetcher,
with the now-malicious program
for(i=0…N): X[Y[Z[i]]]

2) Attacker tricks the prefetcher
into reading attacker-controlled
data z=Z[i+△], out of bounds of Z

3) The DMP reads any attacker
chosen private value y=Y[z], out
of bounds of Y

4) Finally leaks that value over a
traditional cache covert channel
vis. the final prefetch for &X[y]

DMPS IN AN ADVERSARIAL SETTING
Attacker Goal: read memory outside of a software sandbox.

MOTIVATING EXAMPLE:
DATA MEMORY DEPENDENT PREFETCHERS

AUGURY: FOLLOW UP WORK AT OAKLAND’22
We demonstrate the existence of a pointer- chasing
DMPon recentApple processors, including the A14 and
M1. We then reverse engineer the details of this DMP to
determine the opportunities for and restrictions it places on
attackers using it. Finally, we demonstrate several
basic attack primitives capable of leaking pointer values
using the DMP.
Read more about this follow up work at: prefetchers.info

Data Memory-Dependent Prefetchers (DMPs) are effective
in cases where stride prefetchers fail, e.g., in applica-
tions dominated by indirections or “pointer chasing.”
for (i=0...N) Multi-Level Indirection access pattern. The

X[Y[Z[i]]] DMPprefetches entries in Y by using the values
of Z, and entries in X by using the values of Y

X[Y[Z[i]]]

Y[Z[i]]

Z[i]
...

...

Sandbox Protected
Space

Prefetch:
X[secret]

Prefetch:
Z[i+∆]=
target

Leak secret over
cache covert channel

Prefetch:
secret=
Y[target]
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INTRODUCTION
Microarchitectural attacks have plunged Computer
Architecture into a security crisis. Yet, as the slowing of
Moore’s law justifies the use of ever more exotic
microarchitecture, it is likelywehave only seen the tip of
the iceberg.
• Uncovers seven classes of microarchitectural
optimizations with novel security implications

• Proposes a conceptual framework through which to
studymicroarchitectural optimizations

• Demonstrates several Proofs-of-Concept to show their
efficacy

This paper’s goal is to perform an early analysis to inform
secure and performant developmentmoving forward.

1. DATA MEMORY-DEPENDENT
PREFETCHERS

2. COMPUTATION SIMPLIFICATION

3. PIPELINE COMPRESSION

4. COMPUTATION REUSE

5. SILENT STORES
6. VALUE PREDICTION

7. REGISTER-FILE COMPRESSION

We found a range of
microarchitectural
optimizations with novel
security implications


